精英家教网 > 高中数学 > 题目详情
13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{\sqrt{3}}{3}$,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,求椭圆的标准方程.

分析 写出圆的方程,利用直线与圆相切的充要条件列出方程求出b的值,利用椭圆的离心率公式得到a,c的关系,再利用椭圆本身三个参数的关系求出a,c的值,从而可得椭圆的方程.

解答 解:由题意可得圆的方程为x2+y2=b2
∵直线x-y+2=0与圆相切,
∴d=$\frac{2}{\sqrt{2}}$=b,即b=$\sqrt{2}$,
又e=$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$,即a=$\sqrt{3}$c,
∵a2=b2+c2
∴a=$\sqrt{3}$,c=1,
∴椭圆方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$.

点评 本题考查椭圆的标准方程,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.计算
(1)$(\frac{2}{3}{)^0}+{2^{-2}}×(2\frac{1}{4}{)^{-\;\frac{1}{2}}}-(0.01{)^{0.5}}$
(2)log25625+lg$\frac{1}{100}$+lne.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.用数学归纳法证明:对于任意自然数n,数11n+2+122n+1是133的倍数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设双曲线x2-$\frac{{y}^{2}}{3}$=1的左右焦点为F1,F2.点P(6,6)为双曲线内部的一点,点M是双曲线右支上的一点,求|MP|+$\frac{1}{2}$|MF2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知顶点在原点,焦点在y轴上的抛物线被直线x-2y-1=0截得的弦长为$\sqrt{15}$,求此抛物线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,以原点O为圆心,以椭圆C的长半轴长为半径的圆与直线x-y+2=0相切.
(1)求椭圆C的标准方程
(2)过椭圆C的右焦点F作斜率为-$\frac{\sqrt{2}}{2}$的直线l交椭圆C于A,B两点,且$\overrightarrow{OA}+\overrightarrow{OD}=\overrightarrow{BO}$,又点D关于坐标原点O的对称点为点E,求AB与DE两条线段的垂直平分线的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{3}$x3-ax2+1在x=2处取得极值,求:
(1)实数a的值;
(2)f(x)在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,cosA=$\frac{3}{5}$,且cosB=$\frac{5}{13}$.则cosC的值是$\frac{33}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an},并且an=$\left\{\begin{array}{l}{{n}^{2}-5xn+8,n≤5且n{∈N}^{*}}\\{(x-23{)log}_{2}(n-4),n>5且n{∈N}^{*}}\end{array}\right.$,若{an}是递减数列,则实数x的取值范围是[2,23).

查看答案和解析>>

同步练习册答案