精英家教网 > 高中数学 > 题目详情
在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立的(  )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDE⊥平面ABC
D.平面PAE⊥平面ABC
C
若平面PDF⊥平面ABC,则顶点P在底面的射影在DF上,又因为正四面体的顶点在底面的射影是底面的中心,因此结论不成立,故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在平行四边形中,.将沿折起,使得平面平面,如图.

(1)求证:
(2)若中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,空间中有一直角三角形为直角,,现以其中一直角边为轴,按逆时针方向旋转后,将点所在的位置记为,再按逆时针方向继续旋转后,点所在的位置记为.
(1)连接,取的中点为,求证:面
(2)求与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧面底面
(Ⅰ)若分别为中点,求证:∥平面
(Ⅱ)求证:
(Ⅲ)若,求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图, 已知四边形ABCD和BCEG均为直角梯形,ADBC,CEBG,且,平面ABCD⊥平面BCEGBC=CD=CE=2AD=2BG=2.

(1)求证: ECCD
(2)求证:AG∥平面BDE
(3)求:几何体EG-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面四个结论:

①直线BE与直线CF异面;
②直线BE与直线AF异面;
③直线EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正确的有__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2013•浙江)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则(  )
A.平面α与平面β垂直
B.平面α与平面β所成的(锐)二面角为45°
C.平面α与平面β平行
D.平面α与平面β所成的(锐)二面角为60°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知表示平面,m,n表示直线, ,给出下列四个结论:
;②;③;④
则上述结论中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是两条不同的直线, 是两个不同的平面,下列命题中正确的是(    )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

同步练习册答案