精英家教网 > 高中数学 > 题目详情

为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值.

(1),;(2)隔热层修建5cm厚,总费用达到最小值70万元.

解析试题分析:本题是实际应用题,考查了函数的最值(1)分别计算隔热层建造费用与20年的能源消耗费用之和即可得的表达式;(2)对函数求导,研究函数的单调性,求得当有最小值.在函数与导数知识的交汇处命题.
试题解析:(1)设隔热层厚度为,由题设,每年能源消耗费用为
再由,得,因此                     3分
而建造费用为.
最后得隔热层建造费用与20年的能源消耗费用之和为
              5分
(2).
解得(舍去)                             8分
时,
时,的最小值点,
对应的最小值为.
当隔热层修建5cm厚时,总费用达到最小值70万元.                   12分
考点:1.待定系数求函数的解析式;2.函数的最值;3.导数法研究函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数
(1)设函数,若方程上有且仅一个实根,求实数 的取值范围;
(2)当时,求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

张林在李明的农场附近建了一个小型工厂,由于工厂生产须占用农场的部分资源,因此李明每年向张林索赔以弥补经济损失并获得一定净收入.工厂在不赔付农场的情况下,工厂的年利润(元)与年产量(吨)满足函数关系.若工厂每生产一吨产品必须赔付农场元(以下称为赔付价格).
(Ⅰ)将工厂的年利润(元)表示为年产量(吨)的函数,并求出工厂获得最大利润的年产量;
(Ⅱ)若农场每年受工厂生产影响的经济损失金额(元),在工厂按照获得最大利润的产量进行生产的前提下,农场要在索赔中获得最大净收入,应向张林的工厂要求赔付价格是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求函数的单调区间
(2)若函数有两个零点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某公司生产品牌服装的年固定成本为10万元,每生产千件,须另投入2.7万元,设该公司年内共生产品牌服装千件并全部销售完,每千件的销售收入为万元,且
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.其中
(1)若函数的图像的一个公共点恰好在轴上,求的值;
(2)若是方程的两根,且满足,证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,当时,
(1)证明:
(2)若成立,请先求出的值,并利用值的特点求出函数的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数   是奇函数.
(1)求实数的值;
(2)若函数在区间上单调递增,求实数的取值范围;
(3)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数的定义域和值域均为,求实数的值;
(2)若在区间上是减函数,且对任意的,总有,求实数的取值范围;

查看答案和解析>>

同步练习册答案