如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.试探究点M的位置,使F—AE—M为直二面角.
M为BC的中点
解析试题分析:以D为坐标原点,分别以DA、DC、DF所在直线为x、y、z轴,建立空间直角坐标D-xyz,
依题意,得D(0,0,0),A(1,0,0),F(0,0,1),C(0,1,0),B(1,1,0),E(1,1,1),
设M(λ,1,0),平面AEF的法向量为=(x1,y1,z1),平面AME的法向量为
=(x2,y2,z2)
∵=(0,1,1),=(-1,0,1), ∴ ∴
取z1=1,得x1=1,y1=-1 ∴=(1,-1,0)
又=(λ-1,1,0) ,=(0,1,1),
∴ ∴
取x2=1得y2=1-λ,z2=λ-1 ∴=(1,1-λ,λ-1)
若平面AME⊥平面AEF,则⊥ ∴=0,
∴1-(1-λ)+(λ-1)=0,解得λ=,
此时M为BC的中点.
所以当M在BC的中点时,平面AME⊥平面AEF. ……………12分
考点:空间向量法求解两面垂直
点评:空间向量解立体几何题目首要的是找到坐标系合适的位置,写出相关点的坐标
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=,F是BC的中点.
(Ⅰ)求证:DA⊥平面PAC;
(Ⅱ)点G为线段PD的中点,证明CG∥平面PAF;
(Ⅲ)求三棱锥A—CDG的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图所示的多面体,它的正视图为直角三角形,侧视图为正三角形,俯视图为正方形(尺寸如图所示),E为VB的中点.
(1)求证:VD∥平面EAC;
(2)求二面角A—VB—D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直四棱柱ABCD—A′B′C′D′的底面是菱形,,E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.
(1)求证:平面AEF⊥平面AA′C′C;
(2)求截面AEF与底面ABCD所成二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,四棱锥中,底面是边长为4的正方形,是与的交点,平面,是侧棱的中点,异面直线和所成角的大小是60.
(Ⅰ)求证:直线平面;
(Ⅱ)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,已知三棱柱的侧棱与底面垂直,,,,分别是,的中点,点在直线上,且;
(1)证明:无论取何值,总有;
(2)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值;
(3)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com