·
(I)求动点P的轨迹C的方程;
(II)过点F的直线交轨迹C于A、B两点,交直线l于点M.
(1)已知的值;
(2)求||·||的最小值.
本小题考查直线、抛物线、向量等基础知识,考查轨迹方程的求法以及研究曲线几何特征的基本方法,考查运算能力和综合解题能力.
解法一:(I)设点P(x,y),则Q(-1,y),由得:
(x+1,0)·(2,-y)=(x-1,y)·(-2,y),化简得C:y2=4x.
(II)(1)设直线AB的方程为:
x=my+1(m≠0).
设A(x1,y1),B(x2,y2),又M(-1,-).
联立方程组,消去x得:
y2-4my-4=0,
△ =(-4m)2+12>0,
由得:
,整理得:
,
∴
=
=-2-
=0.
解法二:(I)由
∴·,
∴=0,
∴
所以点P的轨迹C是抛物线,由题意,轨迹C的方程为:y2=4x.
(II)(1)由已知
则:…………①
过点A、B分别作准线l的垂线,垂足分别为A1、B1,
则有:…………②
由①②得:
(II)(2)解:由解法一:
·=()2|y1-yM||y2-yM|
=(1+m2)|y1y2-yM(y1+y2)+yM2|
=(1+m2)|-4+ ×4m+|
=
=4(2+m2+) 4(2+2)=16.
当且仅当,即m=1时等号成立,所以·最小值为16.
科目:高中数学 来源:江西省莲塘一中2010-2011学年高二上学期期末终结性测试数学理科试题 题型:044
如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F的直线交轨迹C于A,B两点,交直线l于点M,已知,,求λ1+λ2的值.
查看答案和解析>>
科目:高中数学 来源:岳阳市一中2009届高三第六次质量检测文科数学(含答案) 题型:044
如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F的直线交轨迹C于A,B两点,交直线l于点M,已知,,求λ1+λ2的值.
查看答案和解析>>
科目:高中数学 来源:湖南省岳阳市一中2009届高三第六次月考文科数学试题 题型:044
如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F的直线交轨迹C于A,B
两点,交直线l于点M,已知,,求λ1+λ2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且·=·.
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A,B两点,交直线l于点M,已知=λ1,=λ2,求λ1+λ2的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com