精英家教网 > 高中数学 > 题目详情
有一段“三段论”推理:对于可导函数f(x),若f(x)在区间(a,b)上是增函数,则f′(x)>0对x∈(a,b)恒成立,因为函数f(x)=x3在R上是增函数,所以f′(x)=3x2>0对x∈R恒成立.以上推理中(  )
A.大前提错误B.小前提错误
C.推理形式错误D.推理正确
∵大前提是:“对于可导函数f(x),f(x)在区间(a,b)上是增函数,如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,
因为对于可导函数f(x),f(x)在区间(a,b)上是增函数,f′(x)>0对x∈(a,b)恒成立,应该是f′(x)≥0对x∈(a,b)恒成立,
∴大前提错误,
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

a>0,b>0,2c>ab,求证:
(1)c2>ab
(2)c<a<c.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在等差数列{an}中,若an>0,公差d>0,则有a4•a6>a3•a7,类比上述性质,在等比数列{bn}中,若bn>0,q>1,则b4,b5,b7,b8的一个不等关系是(  )
A.b4+b8>b5+b7B.b5+b7>b4+b8
C.b4+b7>b5+b8D.b4+b5>b7+b8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,我们称边长为1、且顶点的横、纵坐标均为整数的正方形为单位格点正方形.如图,在菱形ABCD中,四个顶点坐标分别是(-8,0),(0,4),(8,0),(0,-4),则菱形ABCD能覆盖的单位格点正方形的个数是______个;若菱形AnBnCnDn的四个顶点坐标分别为(-2n,0),(0,n),(2n,0),(0,-n)(n为正整数),则菱形AnBnCnDn能覆盖的单位格点正方形的个数为______(用含有n的式子表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

计算机是将信息转换成二进制进行处理的,二进制即“逢二进一”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(
111…1
16个1
)2
转换成十进制形式是(  )
A.217-2B.216-2C.216-1D.215-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

3
6
=
5
10
=
7
14
,则边长分别为3,5,7和6,10,14的两个三角形相似”这个推理的大前提是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是(    )
A.假设三内角都不大于60度
B.假设三内角都大于60度
C.假设三内危至多有一个大于60度
D.假设三内角至多有两个大于60度

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a,b∈R,则下面四个式子中恒成立的是(  )
A.lg(1+a2)>0B.a2+b2≥2(a-b-1)
C.a2+3ab>2b2D.<

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正六边形,在下列表达式①;②
;④中,与等价的有(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案