精英家教网 > 高中数学 > 题目详情
2.直线x+(1+m)y=2-m和直线mx+2y+8=0平行,则m的值为(  )
A.1B.-2C.1或-2D.-$\frac{2}{3}$

分析 由直线平行可得1×2-(1+m)m=0,解方程排除重合可得.

解答 解:∵直线x+(1+m)y=2-m和直线mx+2y+8=0平行,
∴1×2-(1+m)m=0,解得m=1或-2,
当m=-2时,两直线重合.
故选:A.

点评 本题考查直线的一般式方程和平行关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.山脚平地上有一条笔直的公路,在公路上A,B,C三点依次测得山顶P的仰角为30°,45°,60°,已知AB=BC=1km,求山高PH.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数为偶函数的是(  )
A.y=x3B.y=ln$\sqrt{{x}^{2}+1}$C.y=exD.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=$\left\{\begin{array}{l}{cosπx,(x>0)}\\{f(x+1)-1,(x<0)}\end{array}\right.$,则$f(-\frac{4}{3})$的值为(  )
A.-$\frac{5}{2}$B.-$\frac{3}{2}$C.-$\frac{{\sqrt{3}}}{2}$-2D.$\frac{{\sqrt{3}}}{2}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在三棱锥S-ABC中,△SBC为等边三角形,D,E分别是棱AC,AB上的点,且$\frac{AD}{DC}$=$\frac{AE}{EB}$,求异面直线DE与SB所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设x,y,z均为正实数,且3x=4y=6z
(1)若z=1,求(x-1)(2y-1)的值;
(2)求证:$\frac{1}{z}-\frac{1}{x}=\frac{1}{2y}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.用分数指数幂的形式表示a3•$\sqrt{a}$(a>0)的结果是(  )
A.${a}^{\frac{5}{2}}$B.${a}^{\frac{7}{2}}$C.a4D.${a}^{\frac{3}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.椭圆的两个焦点的坐标分别为F1(-2,0),F2(2,0),且椭圆经过点($\frac{5}{2}$,-$\frac{3}{2}$)
(1)求椭圆标准方程.
(2)求椭圆长轴长、短轴长、离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=4mx+2-3m在区间[-2,2]上存在t,使f(t)=0(t≠±2),则m的取值范围是(  )
A.-$\frac{2}{5}$<m<$\frac{2}{11}$B.m<-$\frac{2}{5}$C.m>$\frac{2}{11}$D.m<-$\frac{2}{5}$或m>$\frac{2}{11}$

查看答案和解析>>

同步练习册答案