精英家教网 > 高中数学 > 题目详情
14.如图,在△ABC中,已知M、N分别是AB、AC的中点,用向量方法证明:MN$\stackrel{∥}{=}$$\frac{1}{2}$BC.

分析 根据向量的三角形法则即可证明.

解答 证明:M、N分别是AB、AC的中点,
∴$\overrightarrow{MN}$=$\overrightarrow{AN}$-$\overrightarrow{AM}$=$\frac{1}{2}$($\overrightarrow{AB}$-$\overrightarrow{AC}$)=$\frac{1}{2}$$\overrightarrow{BC}$,
∴|$\overrightarrow{MN}$|=$\frac{1}{2}$|$\overrightarrow{BC}$|,$\overrightarrow{MN}$∥$\overrightarrow{BC}$
∴MN$\stackrel{∥}{=}$$\frac{1}{2}$BC.

点评 本题考查了向量的三角形法则和向量的平行,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知点A是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点,F为椭圆的一个焦点,且AF⊥x轴,|AF|=c(c为椭圆的半焦距),则椭圆的离心率是$\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若$sinα=\frac{1}{4}$,且α是第二象限的角.则$sin(α+\frac{3π}{2})$=$\frac{{\sqrt{15}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C的极坐标方程为2ρsinθ+ρcosθ=10,将曲线C1:$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$(α为参数)经过伸缩变换$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}\right.$后得到曲线C2
(1)求曲线C2的参数方程;
(2)若点M在曲线C2上运动,试求出M到曲线C的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线C是顶点在原点,以y轴为对称轴的抛物线,过抛物线的焦点且垂直于y轴的直线l被抛物线截得的弦长为8,则抛物线的焦点到顶点的距离为(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,∠C>90°,若函数f(x)在区间[0,1]上是增函数,则下列关系式正确的是(  )
A.f(cosA)>f(cosB)B.f(sinA)>f(sinB)C.f(sinA)>f(cosB)D.f(sinA)<f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=sin2x+$\sqrt{3}$sinxcosx+$\frac{3}{2}$.
(Ⅰ)求f(x)的单调增区间;
(Ⅱ)已知a,b,c分别为△ABC的内角A,B,C的对边,A为锐角,a=2$\sqrt{3}$,c=4,且f(A)是f(x)在[0,$\frac{π}{2}$]上的最大值,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若f(x)是定义在区间[-4,4]上的偶函数,且在区间(-4,0)内为减函数,则下列选项中正确的是(  )
A.f(0)=0B.f(-1)>f(2)C.f(-2)-f(2)=0D.f(-3)<f($\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在数列{an}中,a1=2,an+1=an+$\frac{1}{n(n+1)}$,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案