【题目】在平面直角坐标系中,抛物线的焦点为,(其中)是上的一点,且.
(1)求抛物线的方程;
(2)已知为抛物线上除顶点之外的任意一点,在点处的切线与轴交于点,过点的直线交抛物线于,两点,设,,的斜率分别为,,,求证:,,成等比数列.
【答案】(1);(2)证明见解析.
【解析】
(1)根据抛物线的定义可得,由在抛物线列出方程,联立解方程组即可求出;
(2) 设点,利用导数的几何意义求出点处切线的斜率,再由点斜式可求出切线的方程,令,可得,从而可设直线的方程为,与联立方程组消去可得,设,利用根与系数关系可得,再将用,表示并化简可得,而,从而可证出,,成等比数列.
(1)由题意,得,解得,或,
又,所以,所以抛物线的方程为.
(2)由题意,得直线的斜率存在,且不为0.
由,得,则,设点,则切线的斜率为,
于是切线的方程为,即,所以.
设直线的方程为,代入,
消去并整理,得,
由直线交抛物线于两点,得.
设,所以,
又,,所以,,
所以,又,
所以,故成等比数列.
科目:高中数学 来源: 题型:
【题目】设点为圆上的动点,过点作轴的垂线,垂足为,动点满足,记点的轨迹为.
(1)求曲线的方程;
(2)已知点,斜率为的直线与曲线交于不同的两点,,且满足,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司有l000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为“追光族”,计划在明年及明年以后才购买5G手机的员工称为“观望者”调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.
(Ⅰ)完成下列列联表,并判断是否有的把握认为该公司员工属于“追光族”与“性别”有关;
属于“追光族” | 属于“观望者” | 合计 | |
女性员工 | |||
男性员工 | |||
合计 | 100 |
(Ⅱ)已知被抽取的这l00名员工中有6名是人事部的员工,这6名中有3名属于“追光族”现从这6名中随机抽取3名,求抽取到的3名中恰有1名属于“追光族”的概率.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在多边形中,四边形为等腰梯形,,,,四边形为直角梯形,,.以为折痕把等腰梯形折起,使得平面平面,如图2所示.
(1)证明:平面.
(2)求直线与平面所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.
(1)用分别表示矩形和的面积,并确定的取值范围;
(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】企业为了监控某种零件的一条流水生产线的产品质量,检验员从该生产线上随机抽取100个零件,测量其尺寸(单位:)并经过统计分析,得到这100个零件的平均尺寸为10,标准差为0.5.企业规定:若,该零件为一等品,企业获利20元;若且,该零件为二等品,企业获利10元;否则,该零件为不合格品,企业损失40元.
(1)在某一时刻内,依次下线10个零件,如果其中出现了不合格品,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查若这10个零件的尺寸分别为9.6,10.5,9.8,10.1,10.7,9.4,10.9,9.5,10,10.9,则从这一天抽检的结果看,是否需要对当天的生产过程进行检查?
(2)将样本的估计近似地看作总体的估计通过检验发现,该零件的尺寸服从正态分布.其中近似为样本平均数,近似为样本方差.
(i)从下线的零件中随机抽取20件,设其中为合格品的个数为,求的数学期望(结果保留整数)
(ii)试估计生产10000个零件所获得的利润.
附:若随机变量服从正态分布,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点, 到抛物线的准线的距离为.
(I)求椭圆的方程和抛物线的方程;
(II)设上两点, 关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校开展学生社会法治服务项目,共设置了文明交通,社区服务,环保宣传和中国传统文化宣讲四个项目,现有该校的甲、乙、丙、丁4名学生,每名学生必须且只能选择1项.
(1)求恰有2个项目没有被这4名学生选择的概率;
(2)求“环保宣传”被这4名学生选择的人数的分布列及其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F为抛物线焦点,A为抛物线C上的一动点,抛物线C在A处的切线交y轴于点B,以FA、FB为邻边作平行四边形FAMB.
(1)证明:点M在一条定直线上;
(2)记点M所在定直线为l,与y轴交于点N,MF与抛物线C交于P,Q两点,求的面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com