精英家教网 > 高中数学 > 题目详情

【题目】设 是定义在 上的奇函数,且对任意实数 ,恒有 .当 时, .
(1)求证: 是周期函数;
(2)当 时,求 的解析式;
(3)计算 .

【答案】
(1)解: 是周期为 的周期函数.
(2)解:当 时, ,由已知得

是奇函数,

又当 时,

是周期为 的周期函数,

从而求得 时,


(3)解: ,又 是周期为 的周期函数,


【解析】(1)根据题意利用函数的周期即可求出结果。(2)由题意结合函数的奇偶性即可求出 f ( x 4 )的解析式再放假函数的周期为4故可得到当 x ∈ [ 2 , 4 ] 时f ( x )的解析式。(3)利用函数的周期递推即可得出结果。
【考点精析】根据题目的已知条件,利用函数奇偶性的性质的相关知识可以得到问题的答案,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+m与函数 的图象上至少存在一对关于x轴对称的点,则实数m的取值范围是(
A.
B.
C.
D.[2﹣ln2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,

(1)求证:数列是等比数列

(2)求数列的通项公式

(3)设,若对任意,有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 为参数),圆 ( 为参数),
(Ⅰ)当 时,求 的交点坐标;
(Ⅱ)过坐标原点 的垂线,垂足为 , 的中点,当 变化时,求 点轨迹的参数方程,并指出它是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是定义在实数集 上的函数,满足条件 是偶函数,且当 时, ,则 的大小关系是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+a|+|x+ |(a>0)(a<0)
(1)当a=2时,求不等式f(x)>3的解集
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正弦型函数有如下性质:最大值为4,最小值为;相邻两条对称轴间的距离为.

(1)求函数解析式;

(2)当时,求函数的值域;

(3)若方程在区间上有两个不同的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新生儿Apgar评分,即阿氏评分是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分,满10分者为正常新生儿,评分7分以下的新生儿考虑患有轻度窒息,评分在4分以下考虑患有重度窒息,大部分新生儿的评分多在7-10分之间,某市级医院妇产科对1月份出生的新生儿随机抽取了16名,以下表格记录了他们的评分情况.
(1)现从16名新生儿中随机抽取3名,求至多有1名评分不低于9分的概率;
(2)以这16名新生儿数据来估计本年度的总体数据,若从本市本年度新生儿任选3名,记 表示抽到评分不低于9分的新生儿数,求 的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五一期间,某商场决定从 种服装、 种家电、 种日用品中,选出 种商品进行促销活动.
(1)试求选出 种商品中至少有一种是家电的概率;
(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高 元,规定购买该商品的顾客有 次抽奖的机会: 若中一次奖,则获得数额为 元的奖金;若中两次奖,则获得数额为 元的奖金;若中三次奖,则共获得数额为 元的奖金. 假设顾客每次抽奖中奖的概率都是 ,请问: 商场将奖金数额 最高定为多少元,才能使促销方案对商场有利?

查看答案和解析>>

同步练习册答案