精英家教网 > 高中数学 > 题目详情

【题目】已知直线l经过抛物线y24x的焦点F,且与抛物线相交于AB两点.

1)若AF4,求点A的坐标;

2)求线段AB的长的最小值.

【答案】1) (32)或(3,-2) (24

【解析】

试题(1)由y24x,得p=2,其准线方程为x=-1,焦点F10).设AB.由抛物线的定义可知,,从而.由此能得到点A的坐标;(2)分类讨论,设直线l的方程为y=kx-1),代入y24x整理得,其两根为,且.由抛物线的定义可知线段AB的长

试题解析:(1)由抛物线的定义可知,AFx1

从而x1413

代入y24x,解得y1±

A的坐标为(3)或(3,-).

2)当直线l的斜率存在时,

设直线l的方程为ykx1).

与抛物线方程联立

消去y,整理得k2x2-(2k24xk20

因为直线与抛物线相交于AB两点,

k≠0,并设其两根为x1x2,则

由抛物线的定义可知,

当直线l的斜率不存在时,直线l的方程为x1,与抛物线相交于A12),B1,-2),

此时AB4,所以,AB≥4,即线段AB的长的最小值为4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数处的切线斜率为2.

(Ⅰ)求的单调区间和极值;

(Ⅱ)若上无解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 C: 的焦距为2,且过点,右焦点为.设A,B 是C上的两个动点,线段 AB 的中点M 的横坐标为,线段AB的中垂线交椭圆C于P,Q 两点.

(1)求椭圆 C 的方程;

(2)设M点纵坐标为m,求直线PQ的方程,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,底面为正三角形,侧棱垂直于底面,.若是棱上的点,且,则异面直线所成角的余弦值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙二人进行一次围棋比赛,每局胜者得1分,负者得0分,约定一方比另一方多3分或满9局时比赛结束,并规定:只有一方比另一方多三分才算赢,其它情况算平局,假设在每局比赛中,甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立,已知前3局中,甲胜2局,乙胜1局.

(1) 求甲获得这次比赛胜利的概率;

(2)设表示从第4局开始到比赛结束所进行的局数,求得分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.某环保人士从当地某年的AQI记录数据中,随机抽取了15天的AQI数据,用如图所示的茎叶图记录.根据该统计数据,估计此地该年空气质量为优或良的天数约为__________.(该年为366天)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量a=(-2,1),b=(x,y).

(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a·b=-1的概率;

(2)若x,y在连续区间[1,6]上取值,求满足a·b<0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象与轴相切,且切点在轴的正半轴上.

(1)若函数上的极小值不大于,求的取值范围;

(2)设,证明: 上的最小值为定值.

查看答案和解析>>

同步练习册答案