精英家教网 > 高中数学 > 题目详情
若函数f(x)=2x3-9x2+12x-a恰好有两上不同零点,则a的值为(  )
A、4B、5或6
C、4或5D、4或6
考点:函数的零点
专题:函数的性质及应用
分析:求函数的导数,要使函数有2个不同的零点,则只需极大值等于0或极小值等于0,即可得到结论.
解答: 解:∵f(x)=2x3-9x2+12x-a,
∴f′(x)=6x2-18x+12=6(x2-3x+2)=6(x-1)(x-2),
由f′(x)>0,解得x>2或x<1,此时函数单调递增,
由f′(x)<0,解得1<x<2,此时函数单调递减,
即当x=1函数f(x)取得极大值f(1)=5-a,
当x=2函数f(x)取得极小值f(2)=4-a,
若要使函数有2个不同的零点,则只需极大值等于0或极小值等于0,
即5-a=0或4-a=0,
解得a=5或a=4,
故选:C.
点评:本题主要考查函数零点的应用,利用函数和极值之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设锐角△ABC的内角A、B、C的对边分别为a、b、c,且2asinB=
3
b
(1)求角A的大小;
(2)若b=3,c=2,求边a.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
定义域为M,集合N={x|x2-2x=0},则M∩N=(  )
A、{0,2}B、{0}
C、{2}D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对于x>0有意义,且满足f(2)=1,f(xy)=f(x)+f(y),求f(1)与f(8)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设y=3x•(
2
3
2x•(
1
2
3x,若y=ax,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

是命题p:函数f(x)=(a-
3
2
x是R上的减函数,命题q:f(x)=x2-3x+3在[0,a]上的值域为[1,3],若“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+x2-xlna-b(a,b∈R,A>1),e是自然对数的底数.
(1)试判断函数f(x)在区间(0,+∞)上的单调性;
(2)当a=e,b=4时,求整数k的值,使得函数f(x)在区间(k,k+1)上存在零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=a>0,前n项和为Sn,Sn=
a
1+a
(1+an).
(1)求证:{an}是等比数列;
(2)记bn=an1n|an|(n∈N*),当a=
15
5
时是否存在正整数n,都有bn≤bm?如果存在,求出m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
e3
为同一平面内互不共线的三个单位向量,并满足
e1
+
e2
+
e3
=
0
,且向量
a
=x
e1
+
n
x
e2
+(x+
n
x
e3
 (x∈R,x≠0,n∈N+).
(Ⅰ)求
e1
e2
所成角的大小;    
(Ⅱ)记f(x)=|
a
|,试求f(x)的单调区间及最小值.

查看答案和解析>>

同步练习册答案