精英家教网 > 高中数学 > 题目详情
10.集合A={x|x=in,n∈N}的子集的个数为16.

分析 根据复数运算法则确定出A中元素个数,即可确定出A子集的个数.

解答 解:当n=0时,x=1;当n=1,x=i;当n=2时,x=-1;当n=3时,x=-i,
依此类推,
∴A={1,i,-1,-i},
则A子集个数为24=16,
故答案为:16

点评 此题考查了子集与真子集,以及复数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下列各式中,值为$\frac{1}{2}$的是(  )
A.cos2$\frac{π}{12}$-sin2$\frac{π}{12}$B.$\sqrt{\frac{{1+cos\frac{π}{6}}}{2}}$
C.sin15°cos15°D.$\frac{tan22.5°}{1-ta{n}^{2}22.5°}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p:|x-1|≤2,命题q:-1<x≤3,则命题p是命题q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知m∈R,复数z=$\frac{m(m+2)}{m-1}$+(m2+2m-3)i,当m为何值时,
(1)z为实数?
(2)z为虚数?
(3)z为纯虚数?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知tanα=-2,则$\frac{3sinα+cosα}{sinα-cosα}$的值等于$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}的前n项和为Sn,若$\frac{a_6}{a_5}=\frac{2}{3},则\frac{{{S_{11}}}}{S_9}$=(  )
A.$\frac{22}{27}$B.$\frac{2}{3}$C.$\frac{8}{27}$D.$\frac{11}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设P,Q是复平面上的点集,P={z||z-3i|=4},Q={ω|ω=2iz,z∈P}.
(1)P,Q分别表示什么曲线(指出形状、位置、大小)?
(2)设z1∈P,z2∈Q,求|z1-z2|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线x+y=a+1被圆(x-2)2+(y-2)2=4所截得的弦长为2$\sqrt{2}$,则a=(  )
A.1或5B.-1或5C.1或-5D.-1或-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1,F2,离心率为$\frac{\sqrt{2}}{2}$,过F1且垂直于x轴的直线被椭圆C截得的线段长为$\sqrt{2}$;
(Ⅰ)求椭圆C的方程;
(Ⅱ)若P为椭圆C在第一象限内的任意一点,过点P且斜率为k0的直线与椭圆相切,设PF1,PF2的斜率分别为k1,k2,试证明$\frac{1}{{k}_{0}{k}_{1}}$+$\frac{1}{{k}_{0}{k}_{2}}$为定值,并求出此定值;
(Ⅲ)若直线l:y=kx+m与椭圆C交于不同的两点A、B,且原点O到直线l的距离为1,设$\overrightarrow{OA}$•$\overrightarrow{OB}$=λ,当$\frac{2}{3}$≤λ≤$\frac{3}{4}$时,求△AOB的面积S的取值范围.

查看答案和解析>>

同步练习册答案