精英家教网 > 高中数学 > 题目详情
11.△ABC内接于以O为圆心,1为半径的圆,且3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,则△AOB的面积=(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.1D.$\frac{1}{2}$

分析 根据平面向量的线性运算与数量积运算法则,得出$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,
结合题意,求出直角三角形△AOB的面积即可.

解答 解:∵3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,∴3$\overrightarrow{OA}$+4$\overrightarrow{OB}$=-5$\overrightarrow{OC}$;
∴(3$\overrightarrow{OA}$+4$\overrightarrow{OB}$)2=(-5$\overrightarrow{OC}$)2
由|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=1,
∴9+16+24$\overrightarrow{OA}$•$\overrightarrow{OB}$=25,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
∴$\overrightarrow{OA}$⊥$\overrightarrow{OB}$;
∴△AOB的面积为S△AOB=$\frac{1}{2}$×1×1=$\frac{1}{2}$.
故选:D.

点评 本题考查了平面向量的线性运算与数量积的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知tan($\frac{π}{4}$+α)=3,则tanα的值是(  )
A.2B.$\frac{1}{2}$C.-1D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如果1+2i是实系数一元二次方程x2+ax+b=0的根,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.抛掷一枚质地均匀的硬币,如果连续抛掷2011次,那么第2010次出现正面朝上的概率是(  )
A.$\frac{1}{2010}$B.$\frac{1}{2011}$C.$\frac{2010}{2011}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知全集U=Z,A={x|x=4k-1,k∈Z},B={x|x=4k+1,k∈Z},指出A与∁UB,B与∁UA的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知x+y=12,xy=32,且x>y,求$\frac{{x}^{\frac{1}{2}}-{y}^{\frac{1}{2}}}{{x}^{\frac{1}{2}}+{y}^{\frac{1}{2}}}$+$\frac{{x}^{\frac{4}{3}}-8{x}^{\frac{4}{3}}y}{{x}^{\frac{2}{3}}+2\root{3}{xy}+4{y}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{y}{x}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,已知抛物线C:y2=2px(p>0)的准线与x轴交于点R,过焦点F作倾斜角为$\frac{2π}{3}$的直线l与抛物线C交于A,B两点,过A,B两点分别作准线的垂线,垂足分别为P,Q,则S△PAR:S△QBR的值等于$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某校合唱节目由来自学校高一的14个班的同学组成,其中高一13班有2人,其余班级各有1人,合唱过程中有3人在前面领唱,则这3人来自3个不同班级的可能情况的种数为352.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.化简复数$\frac{1}{{{{(1-i)}^2}}}$(其中i为虚数单位)所得结果为(  )
A.$\frac{i}{2}$B.-$\frac{i}{2}$C.iD.-i

查看答案和解析>>

同步练习册答案