精英家教网 > 高中数学 > 题目详情

【题目】已知集合,其中 表示中所有不同值的个数.

)设集合 ,分别求

)若集合,求证:

是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.

【答案】(1) ;(2)见解析;(3).

【解析】试题分析:1)直接利用定义把集合P=2468Q=24816中的值代入即可求出lP)和lQ);
2)先由ai+aj1≤ij≤n)最多有个值,可得,;再利用定义推得所有ai+aj(1≤i<j≤n)的值两两不同,即可证明结论.
(Ⅲ)l(A)存在最小值,设,所以.由此即可证明l(A)的最小值2n-3.

试题解析:

)由

)证明:∵最多有个值,

又集合,任取

时,不妨设,则

时,

∴当且仅当 时,

即所有的值两两不同,

存在最小值,且最小值为

不妨设,可得

中至少有个不同的数,即

,则,即的不同值共有

的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,且,过点的直线与椭圆交于两点,的周长为8.

(Ⅰ)求椭圆的方程;

(Ⅱ)试问:是否存在定点,使得为定值?若存在,求;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)处取得极值,求的值;

(2),试讨论函数的单调性;

(3)时,若存在正实数满足,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆,且点到椭圆C的两焦点的距离之和为.

(Ⅰ)求椭圆的标准方程

(Ⅱ)是椭圆上的两个点,线段的中垂线的斜率为,且直线交于点,求证:点在直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机完全充满电量,在开机不使用的状态下,电池靠自身消耗一直到出现低电量警告之间所能维持的时间称为手机的待机时间.

为了解 两个不同型号手机的待机时间,现从某卖场库存手机中随机抽取 两个型号的手机各台,在相同条件下进行测试,统计结果如下,

手机编号

型待机时间(

型待机时间(

其中, 是正整数,且

)该卖场有型手机,试估计其中待机时间不少于小时的台数.

)从型号被测试的台手机中随机抽取台,记待机时间大于小时的台数为,求的分布列及其数学期望.

)设 两个型号被测试手机待机时间的平均值相等,当型号被测试手机待机时间的方差最小时,写出 的值(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面,底面是平行四边形, 的中点,点在线段上.

(Ⅰ)求证:

(Ⅱ)试确定点的位置,使得直线与平面所成的角和直线与平面所成的角相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a

时,若处取得极小值,求a的值;

时.

若函数在区间上单调递增,求b的取值范围;

若存在实数,使得,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:an+1and(n∈N*),前n项和记为Sna1=4,S3=21.

(1)求数列{an}的通项公式;

(2)设数列{bn}满足b1bn+1bn=2an,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知当x∈[0,1]时,函数y=(mx-1)2的图象与ym的图象有且只有一个交点,求正实数m的取值范围.

查看答案和解析>>

同步练习册答案