精英家教网 > 高中数学 > 题目详情
已知二项式(x+
1
2
)
n
的展开式中前三项的系数成等差数列.
(1)求n的值;
(2)设(x+
1
2
)
n
=a0+a1x+a2x2+…+ 
anxn.①求a5的值;②求a0-a1+a2-a3+…+(-1)nan的值.
分析:(1)由题意可得 2
C
1
n
1
2
=
C
0
n
+
C
2
n
•4,由此求得n的值.
(2)①在二项式的通项公式中,令x的幂指数等于5,求得 r的值,即可求得a5 的值.
②在等式(x+
1
2
)
8
 =a0+a1x+a2x2+…+ 
a8x8 中,令x=-1可得 a0-a1+a2-a3+…+(-1)8•a8的值.
解答:解:(1)由于已知二项式(x+
1
2
)
n
的展开式中前三项的系数
C
0
n
C
1
n
1
2
C
2
n
•22成等差数列,故有2
C
1
n
1
2
=
C
0
n
+
C
2
n
•4,
解得n=8,或 n=1(舍去).
(2)①二项式的通项公式为
C
r
8
•x8-r(
1
2
)
r
,令8-r=5,r=3,∴a5=
C
3
8
1
8
=
7
4

②在等式(x+
1
2
)
8
 =a0+a1x+a2x2+…+ 
a8x8 中,令x=-1可得 a0-a1+a2-a3+…+(-1)8•a8=
1
256
点评:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,求展开式的系数和常用的方法是赋值法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a=
6
π
2
cosxdx
,b为二项式(x-
3
6
)3
的展开式的第二项的系数,则复数z=a+bi的共轭复数是(  )
A、-
1
2
+
3
2
i
B、-
1
2
-
3
2
i
C、
1
2
+
3
2
i
D、
1
2
-
3
2
i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n∈N*,且(x+
1
2
)n
展开式中前三项系数成等差数列.
(1)求n;
(2)求展开式中二项式系数最大的项;
(3)若(x+
1
2
)n=a0+a1(x-
1
2
)+a2(x-
1
2
)2
+…+an(x-
1
2
)n
,求a0+a1+…+an的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列所给命题中,正确的有
③④
③④
(写出所有正确命题的序号)
①任意的圆锥都存在两条母线互相垂直;
②在△ABC中,若4sinA+2cosB=1,2sinB+4cosA=3
3
,则∠C=30°或150°;
③关于x的二项式(2x-
1
x
)4
的展开式中常数项是24;
④命题P:?x∈R,x2+1≥1;命题:q:?x∈R,x2-x+1≤0,则命题P∧(¬q)是真命题;
⑤已知函数f(x)=loga(-x2+logax)的定义域是(0,
1
2
)
,则实数a的取值范围是[
1
32
1
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
x
+
1
2•
4x
n的展开式中仅有第5项二项式系数最大,则展开式中的有理项共有
 
项,分别是第
 
项.

查看答案和解析>>

同步练习册答案