精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的内角ABC的对边分别为abc

(1)求角A的大小;

(2)若a=3,求△ABC的周长L的取值范围.

【答案】(1)

(2)L∈(6,9]

【解析】

(1)由条件可得,再结合正弦定理及三个角之间的关系可得,进而求出A

(2)利用余弦定理再结合基本不等式,求得3<b+c≤6,即可得到周长L的范围.

(1)由题意

所以

由正弦定理,可得

因为,所以sinB=sinA+C=sinAcosC+cosAsinC

又由,则

整理得,又因为,所以

2)由(1)和余弦定理,即

,整理得

又由(当且仅当b=c=3时等号成立)

从而,可得b+c≤6,

b+ca=3,∴3<b+c≤6,从而周长L∈(6,9].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图(1),在等腰直角中,斜边D的中点,将沿折叠得到如图(2)所示的三棱锥,若三棱锥的外接球的半径为,则_________.

图(1 图(2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在六面体ABCDA1B1C1D1中,AA1//CC1A1B=A1DAB=AD.求证:

1AA1BD

2BB1//DD1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)设函数,若,求的极值;

2)设函数,若的图象与的图象有两个不同的交点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有一块圆心,半径为200米,圆心角为的扇形绿地,半径的中点分别为为弧上的一点,设,如图所示,拟准备两套方案对该绿地再利用.

(1)方案一:将四边形绿地建成观赏鱼池,其面积记为,试将表示为关于的函数关系式,并求为何值时,取得最大?

(2)方案二:将弧和线段围成区域建成活动场地,其面积记为,试将表示为关于的函数关系式;并求为何值时,取得最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,上异于的点.

(1)证明:平面平面

(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体平面平面四边形为菱形 中点.

1)求证: 平面

2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】武汉有九省通衢之称,也称为江城,是国家历史文化名城.其中著名的景点有黄鹤楼、户部巷、东湖风景区等等.

1)为了解·劳动节当日江城某旅游景点游客年龄的分布情况,从年龄在22岁到52岁的游客中随机抽取了1000人,制成了如图的频率分布直方图:

现从年龄在内的游客中,采用分层抽样的方法抽取10人,再从抽取的10人中随机抽取4人,记4人中年龄在内的人数为,求

2)为了给游客提供更舒适的旅游体验,该旅游景点游船中心计划在2020年劳动节当日投入至少1艘至多3型游船供游客乘坐观光.2010201910年间的数据资料显示每年劳动节当日客流量(单位:万人)都大于1.将每年劳动节当日客流量数据分成3个区间整理得表:

劳动节当日客流量

频数(年)

2

4

4

以这10年的数据资料记录的3个区间客流量的频率作为每年客流量在该区间段发生的概率,且每年劳动节当日客流量相互独立.

该游船中心希望投入的型游船尽可能被充分利用,但每年劳动节当日型游船最多使用量(单位:艘)要受当日客流量(单位:万人)的影响,其关联关系如下表:

劳动节当日客流量

型游船最多使用量

1

2

3

若某艘型游船在劳动节当日被投入且被使用,则游船中心当日可获得利润3万元;若某艘型游船劳动节当日被投入却不被使用,则游船中心当日亏损0.5万元.(单位:万元)表示该游船中心在劳动节当日获得的总利润,的数学期望越大游船中心在劳动节当日获得的总利润越大,问该游船中心在2020年劳动节当日应投入多少艘型游船才能使其当日获得的总利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,解不等式

(Ⅱ)若的图象与x轴围成图形的面积大于6,求实数a的取值范围.

查看答案和解析>>

同步练习册答案