精英家教网 > 高中数学 > 题目详情

【题目】已知点P是抛物线C:上任意一点,过点P作直线PH⊥x轴,点H为垂足.点M是直线PH上一点,且在抛物线的内部,直线l过点M交抛物线C于A、B两点,且点M是线段AB的中点.

(1)证明:直线l平行于抛物线C在点P处切线;

(2)若|PM|=, 当点P在抛物线C上运动时,△PAB的面积如何变化?

【答案】(1)见解析;(2)的面积为定值.

【解析】

(1)设点,则,易知,从而得,利用求导可以得切线斜率,从而得证;

(2)由,得,从而可得直线,与抛物线联立得,再由,利用韦达定理求解即可.

(1)证明:设点

,得

,即抛物线在点处的切线的斜率为

又直线的斜率,即

所以直线平行于抛物线在点处的切线.

(2)解:由,得

于是直线,即

联立直线与抛物线消去y得

的面积为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某地有三家工厂,分别位于矩形ABCD的顶点AB以及CD的中点P处,已知AB=20kmCB=10km,为了处理三家工厂的污水,现要在矩形ABCD(含边界),且与AB等距离的一点O处建造一个污水处理厂,并铺设排污管道AOBOOP,设排污管道的总长为km

(I),将表示成的函数关系式;

(II)确定污水处理厂的位置,使三条排污管道的总长度最短,并求出最短值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3-3ax,g(x)=bx2+clnx且g(x)在点(1,g(1))处的切线方程为2y-1=0.

(1)求g(x)的解析式;

(2)设函数G(x)=若方程G(x)=a2有且仅有四个解求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若角是第一象限角,问角(1,(2,(3各是第几象限角?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与圆交于两点

1求线的垂直平分线的方程

2,求的值

32的条件下,求过点的圆的切线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形中,分别是的中点,将四边形沿直线进行翻折,给出下列四个结论:①;②③平面平面;④平面平面,则上述结论可能正确的是( ).

A.①③B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则下列判断正确的是(

A.为奇函数

B.对任意,,则有

C.对任意,则有

D.若函数有两个不同的零点,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜欢数学是否与性别有关,对本班人进行了问卷调查得到了如下的列联表,已知在全部人中随机抽取人抽到喜欢数学的学生的概率为.

喜欢数学

不喜欢数学

合计

男生

女生

合计

1)请将上面的列联表补充完整(不用写计算过程);

2)能否在犯错误的概率不超过的前提下认为喜欢数学与性别有关?说明你的理由;

3)现从女生中抽取人进一步调查,设其中喜欢数学的女生人数为,求的分布列与期望.

下面的临界表供参考:

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位为了响应疫情期间有序复工复产的号召,组织从疫区回来的甲、乙、丙、丁4名员工进行核酸检测,现采用抽签法决定检测顺序,在员工甲不是第一个检测,员工乙不是最后一个检测的条件下,员工丙第一个检测的概率为(

A.B.C.D.

查看答案和解析>>

同步练习册答案