精英家教网 > 高中数学 > 题目详情

【题目】由于《中国诗词大会》节目在社会上反响良好,某地也模仿并举办民间诗词大会,进入正赛的条件为:电脑随机抽取10首古诗,参赛者能够正确背诵6首及以上的进入正赛.若诗词爱好者甲、乙参赛,他们背诵每一首古诗正确的概率均为

1)求甲进入正赛的概率.

2)若参赛者甲、乙都进入了正赛,现有两种赛制可供甲、乙进行PK,淘汰其中一人.

赛制一:积分淘汰制,电脑随机抽取4首古诗,每首古诗背诵正确加2分,错误减1分.由于难度增加,甲背诵每首古诗正确的概率为,乙背诵每首古诗正确的概率为,设甲的得分为,乙的得分为

赛制二:对诗淘汰制,甲、乙轮流互出诗名,由对方背诵且互不影响,乙出题,甲回答正确的概率为0.3,甲出题,乙回答正确的概率为0.4,谁先背诵错误谁先出局.

i)赛制一中,求甲、乙得分的均值,并预测谁会被淘汰;

ii)赛制二中,谁先出题甲获胜的概率大?

【答案】1;(2)(i0,乙可能被淘汰;(ii)甲先出题甲获胜的概率大.

【解析】

1)利用相互独立事件的概率公式求解;

2)(i)分别写出的可能取值,求出对应的概率,再求期望,比较大小得出结论;(ii)分别求出甲或乙先出题时,甲乙两人获胜的概率,从而得出结论.

(1)甲进入正赛的概率为

∴甲进入正赛的概率.

(2)i)由题意,甲乙两人的得分均有可能为8分,5分,2分,-1分,-4分.

.

,

,

.

.

乙可能被淘汰.

ii)甲先出题且甲获胜的概率:

此为等比数列求和,.

乙先出题且乙获胜的概率:

此为等比数列求和,

则甲获胜的概率约为.

甲先出题甲获胜的概率大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为4,直线被椭圆截得的线段长为.

(1)求椭圆的标准方程;

(2)过椭圆的右顶点作互相垂直的两条直线分别交椭圆两点(点不同于椭圆的右顶点),证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

()讨论函数的单调性;

()证明: (为自然对数的底)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱FE分别是的中点.

1)证明:平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过抛物线y22pxp0)上一点P12),作两条直线分别交抛物线于Ax1y1),Bx2y2),当PAPB的斜率存在且倾斜角互补时:

1)求y1+y2的值;

2)若直线ABy轴上的截距b[13]时,求ABP面积SABP的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线与曲线,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

1)写出曲线的极坐标方程;

2)在极坐标系中,已知的公共点分别为,当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点分别是椭圆的左、右焦点,为等腰三角形.

(Ⅰ)求椭圆的方程;

(Ⅱ)过左焦点作直线交椭圆于两点,其中,另一条过的直线交椭圆于两点(不与重合),且点不与点重合. 过轴的垂线分别交直线,.

①求点坐标; ②求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以原点为极点,以轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆的方程为被圆截得的弦长为.

(Ⅰ)求实数的值;

(Ⅱ)设圆与直线交于点,若点的坐标为,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了迎接2019年全国文明城市评比,某市文明办对市民进行了一次文明创建知识的网络问卷调查.每一位市民有且仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:

组别

频数

25

150

200

250

225

100

50

(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求

(2)在(1)的条件下,文明办为此次参加问卷调查的市民制定如下奖励方案:

(i)得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;

(ii)每次获赠的随机话费和对应的概率为:

获赠的随机话费(单位:元)

20

40

概率

现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.

附:①

②若,则.

查看答案和解析>>

同步练习册答案