精英家教网 > 高中数学 > 题目详情
已知函数为自然对数的底数).
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,若对任意的恒成立,求实数的值;
(Ⅲ)求证:.
(Ⅰ)时,单调递增区间为时,单调递减区间为
单调递增区间为;(Ⅱ);(Ⅲ)证明见解析

试题分析:(Ⅰ)利用导数分析函数的单调性,根据分类讨论得出函数的单调区间;(Ⅱ)先由(Ⅰ)中时的单调性可知,即,构造函数,由导函数分析可得上增,在上递减,则,由对任意的恒成立,故,得;(Ⅲ)先由(Ⅱ),即,从而问题等价转化为证.
试题解析:(Ⅰ)                          1分
时,上单调递增。                     2分
时,时,单调递减,
时,单调递增.            4分
(Ⅱ)由(Ⅰ),时,
                          5分
,记 
 
上增,在上递减

,得                        8分
(Ⅲ)由(Ⅱ),即,则时,
要证原不等式成立,只需证:,即证:
下证   ①                                     9分



①中令,各式相加,得

成立,                          
故原不等式成立.                                                 14分
方法二:时,
时,

时,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数
(1)当时,函数取得极值,求的值;
(2)当时,求函数在区间[1,2]上的最大值;
(3)当时,关于的方程有唯一实数解,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为自然对数的底,
(1)求的最值;
(2)若关于方程有两个不同解,求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(Ⅰ)若,求的极小值;
(Ⅱ)在(Ⅰ)的结论下,是否存在实常数,使得?若存在,求出的值.若不存在,说明理由.
(Ⅲ)设有两个零点,且成等差数列,试探究值的符号.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其对应的图像为曲线C;若曲线C过,且在点处的切斜线率
(1)求函数的解析式
(2)证明不等式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的定义域为,部分对应值如下表, 的导函数的图象如图所示.下列关于的命题:

①函数的极大值点为
②函数上是减函数;
③如果当时,的最大值是2,那么的最大值为4;
④当时,函数个零点;
⑤函数的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是                           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若曲线在点处的切线与两条坐标轴围成的三角形的面积为18,则 (   )
A.64 B.32 C.16D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,其中,如果存在实数,使,则的值为(   )
A.必为正数B.必为负数C.必为非负D.必为非正

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数满足f(1)=1,且对任意x∈R都有,则不等式的解集为   (  )
A.(1,2)B.(0,1)C.(1,+∞)D.(-1,1)

查看答案和解析>>

同步练习册答案