精英家教网 > 高中数学 > 题目详情

 已知如图,的外接圆的圆心为,,

   则等于             .     

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在平面直角坐标系xOy中,已知椭圆C:
x23
+y2=1
.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=-3于点D(-3,m).
(Ⅰ)求m2+k2的最小值;
(Ⅱ)若|OG|2=|OD|?|OE|,
(i)求证:直线l过定点;
(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城一模)如图,在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点M(3
2
2
),椭圆的离心率e=
2
2
3
,F1、F2分别是椭圆的左、右焦点.
(1)求椭圆C的方程;
(2)过点M作两直线与椭圆C分别交于相异两点A、B.
①若直线MA过坐标原点O,试求△MAF2外接圆的方程;
②若∠AMB的平分线与y轴平行,试探究直线AB的斜率是否为定值?若是,请给予证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届广东佛山南海普通高中高三8月质量检测文科数学试卷(解析版) 题型:解答题

如图,在平面直角坐标系中,已知,直线与线段分别交于点.

(1)当时,求以为焦点,且过中点的椭圆的标准方程;

(2)过点作直线于点,记的外接圆为圆.

①求证:圆心在定直线上;

②圆是否恒过异于点的一个定点?若过,求出该点的坐标;若不过,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省六校高三5月高考模拟考试理科数学试卷(解析版) 题型:解答题

如图所示:已知过抛物线的焦点F的直线与抛物线相交于A,B两点。

(1)求证:以AF为直径的圆与x轴相切;

(2)设抛物线在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程;

(3)设过抛物线焦点F的直线与椭圆的交点为C、D,是否存在直线使得,若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

同步练习册答案