精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥P﹣ABCD中,AD∥BC,AD=AB=DC= BC=1,E是PC的中点,面PAC⊥面ABCD.
(Ⅰ)证明:ED∥面PAB;
(Ⅱ)若PC=2,PA= ,求二面角A﹣PC﹣D的余弦值.

【答案】(Ⅰ)证明:取PB的中点F,连接AF,EF.

∵EF是△PBC的中位线,∴EF∥BC,且EF=

又AD=BC,且AD= ,∴AD∥EF且AD=EF,

则四边形ADEF是平行四边形.

∴DE∥AF,又DE面ABP,AF面ABP,

∴ED∥面PAB;

(Ⅱ)解:法一、取BC的中点M,连接AM,则AD∥MC且AD=MC,

∴四边形ADCM是平行四边形,

∴AM=MC=MB,则A在以BC为直径的圆上.

∴AB⊥AC,可得

过D作DG⊥AC于G,

∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,

∴DG⊥平面PAC,则DG⊥PC.

过G作GH⊥PC于H,则PC⊥面GHD,连接DH,则PC⊥DH,

∴∠GHD是二面角A﹣PC﹣D的平面角.

在△ADC中, ,连接AE,

在Rt△GDH中,

即二面角A﹣PC﹣D的余弦值

法二、取BC的中点M,连接AM,则AD∥MC,且AD=MC.

∴四边形ADCM是平行四边形,

∴AM=MC=MB,则A在以BC为直径的圆上,

∴AB⊥AC.

∵面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴AB⊥面PAC.

如图以A为原点, 方向分别为x轴正方向,y轴正方向建立空间直角坐标系.

可得

设P(x,0,z),(z>0),依题意有

解得

设面PDC的一个法向量为

,取x0=1,得

为面PAC的一个法向量,且

设二面角A﹣PC﹣D的大小为θ,

则有 ,即二面角A﹣PC﹣D的余弦值


【解析】
【考点精析】利用直线与平面平行的判定对题目进行判断即可得到答案,需要熟知平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)在R上可导且满足不等式xf′(x)+f(x)>0恒成立,且常数a,b满足a>b,则下列不等式一定成立的是(
A.af(a)>bf(b)
B.af(b)>bf(a)
C.af(a)<bf(b)
D.af(b)<bf(a)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=ksin(kx+φ)( )与函数y=kx﹣k2+6的部分图象如图所示,则函数f(x)=sin(kx﹣φ)+cos(kx﹣φ)图象的一条对称轴的方程可以为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某沿海四个城市A,B,C,D的位置如图所示,其中∠ABC=60°,∠BCD=135°,AB=80nmile,BC=40+30 nmile,AD=70 nmile,D位于A的北偏东75°方向.现在有一艘轮船从A出发向直线航行,一段时间到达D后,轮船收到指令改向城市C直线航行,收到指令时城市C对于轮船的方位角是南偏西θ度,则sinθ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某四棱锥的三视图如图所示,俯视图是一个等腰直角三角形,则该四棱锥的表面积是(
A.2 +2 +2
B.3 +2 +3
C.2 + +2
D.3 + +3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+a|+|x+ |(a>0,m∈R,m≠0).
(1)当a=2时,求不等式f(x)>3的解集;
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},{bn}满足:bn=an+1﹣an(n∈N*).
(1)若a1=1,bn=n,求数列{an}的通项公式;
(2)若bn+1bn1=bn(n≥2),且b1=1,b2=2. (i)记cn=a6n1(n≥1),求证:数列{cn}为等差数列;
(ii)若数列{ }中任意一项的值均未在该数列中重复出现无数次,求首项a1应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ax(a>0),设
(1)判断函数h(x)=f(x)﹣g(x)零点的个数,并给出证明;
(2)首项为m的数列{an}满足:①an+1+an ;②f(an+1)=g(an).其中0<m< .求证:对于任意的i,j∈N* , 均有ai﹣aj ﹣m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: 过点P( ,1)且离心率为 ,F为椭圆的右焦点,过F的直线交椭圆C于M,N两点,定点A(﹣4,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若△AMN面积为3 ,求直线MN的方程.

查看答案和解析>>

同步练习册答案