【题目】在四棱锥P﹣ABCD中,AD∥BC,AD=AB=DC= BC=1,E是PC的中点,面PAC⊥面ABCD.
(Ⅰ)证明:ED∥面PAB;
(Ⅱ)若PC=2,PA= ,求二面角A﹣PC﹣D的余弦值.
【答案】(Ⅰ)证明:取PB的中点F,连接AF,EF.
∵EF是△PBC的中位线,∴EF∥BC,且EF= .
又AD=BC,且AD= ,∴AD∥EF且AD=EF,
则四边形ADEF是平行四边形.
∴DE∥AF,又DE面ABP,AF面ABP,
∴ED∥面PAB;
(Ⅱ)解:法一、取BC的中点M,连接AM,则AD∥MC且AD=MC,
∴四边形ADCM是平行四边形,
∴AM=MC=MB,则A在以BC为直径的圆上.
∴AB⊥AC,可得 .
过D作DG⊥AC于G,
∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,
∴DG⊥平面PAC,则DG⊥PC.
过G作GH⊥PC于H,则PC⊥面GHD,连接DH,则PC⊥DH,
∴∠GHD是二面角A﹣PC﹣D的平面角.
在△ADC中, ,连接AE, .
在Rt△GDH中, ,
∴ ,
即二面角A﹣PC﹣D的余弦值 .
法二、取BC的中点M,连接AM,则AD∥MC,且AD=MC.
∴四边形ADCM是平行四边形,
∴AM=MC=MB,则A在以BC为直径的圆上,
∴AB⊥AC.
∵面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴AB⊥面PAC.
如图以A为原点, 方向分别为x轴正方向,y轴正方向建立空间直角坐标系.
可得 , .
设P(x,0,z),(z>0),依题意有 , ,
解得 .
则 , , .
设面PDC的一个法向量为 ,
由 ,取x0=1,得 .
为面PAC的一个法向量,且 ,
设二面角A﹣PC﹣D的大小为θ,
则有 ,即二面角A﹣PC﹣D的余弦值 .
【解析】
【考点精析】利用直线与平面平行的判定对题目进行判断即可得到答案,需要熟知平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.
科目:高中数学 来源: 题型:
【题目】若函数y=f(x)在R上可导且满足不等式xf′(x)+f(x)>0恒成立,且常数a,b满足a>b,则下列不等式一定成立的是( )
A.af(a)>bf(b)
B.af(b)>bf(a)
C.af(a)<bf(b)
D.af(b)<bf(a)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数y=ksin(kx+φ)( )与函数y=kx﹣k2+6的部分图象如图所示,则函数f(x)=sin(kx﹣φ)+cos(kx﹣φ)图象的一条对称轴的方程可以为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某沿海四个城市A,B,C,D的位置如图所示,其中∠ABC=60°,∠BCD=135°,AB=80nmile,BC=40+30 nmile,AD=70 nmile,D位于A的北偏东75°方向.现在有一艘轮船从A出发向直线航行,一段时间到达D后,轮船收到指令改向城市C直线航行,收到指令时城市C对于轮船的方位角是南偏西θ度,则sinθ= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某四棱锥的三视图如图所示,俯视图是一个等腰直角三角形,则该四棱锥的表面积是( )
A.2 +2 +2
B.3 +2 +3
C.2 + +2
D.3 + +3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn}满足:bn=an+1﹣an(n∈N*).
(1)若a1=1,bn=n,求数列{an}的通项公式;
(2)若bn+1bn﹣1=bn(n≥2),且b1=1,b2=2. (i)记cn=a6n﹣1(n≥1),求证:数列{cn}为等差数列;
(ii)若数列{ }中任意一项的值均未在该数列中重复出现无数次,求首项a1应满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣ax(a>0),设 .
(1)判断函数h(x)=f(x)﹣g(x)零点的个数,并给出证明;
(2)首项为m的数列{an}满足:①an+1+an≠ ;②f(an+1)=g(an).其中0<m< .求证:对于任意的i,j∈N* , 均有ai﹣aj< ﹣m.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C: 过点P( ,1)且离心率为 ,F为椭圆的右焦点,过F的直线交椭圆C于M,N两点,定点A(﹣4,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若△AMN面积为3 ,求直线MN的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com