精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|x2﹣3x+2=0},B={x|x2﹣ax+a﹣1=0},C={x|x2﹣mx+2=0}.若A∪B=A,A∩C=C,求实数a,m的取值范围.

【答案】解:由A中方程变形得:(x﹣1)(x﹣2)=0,

解得:x=1或x=2,即A={1,2},

∵B={x|x2﹣ax+a﹣1=0},C={x|x2﹣mx+2=0},且A∪B=A,A∩C=C,

∴BA,CA,

若BA,显见B中至少有一个元素1,即B≠

当B为单元素集合时,只需a=2,此时B={1}满足题意;

当B为双元素集合时,只需a=3,此时B={1,2}也满足题意,

∴a=2或a=3,

则a的取值集合为{2,3};

若CA,

当C是空集时,△=m2﹣8<0,即﹣2 <m<2

当C为单元素集合时,△=0,m=±2

此时C={ }或C={﹣ },不满足题意;

当C为双元素集合时,C只能为{1,2},此时m=3,

综上,m的取值集合为{m|m=3或﹣2 <m<2 }


【解析】解出集合A,分析满足A∪B=A,A∩C=C时即为BA,CA,分类讨论B与C,求出a,m的范围即可.
【考点精析】根据题目的已知条件,利用集合的并集运算和集合的交集运算的相关知识可以得到问题的答案,需要掌握并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立;交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ﹣ln(1+|x|),则使得f(2x)>f(x﹣1)成立的x取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(n)=1+ + +…+ (n∈N*),计算得f(2)= ,f(4)>2,f(8)> ,f(16)>3,f(32)> ,由此推算:当n≥2时,有(
A.f(2n)> (n∈N*
B.f(2n)> (n∈N*
C.f(2n)> (n∈N*
D.f(2n)> (n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0.
(1)求证:直线l恒过定点;
(2)求直线l被圆C截得的弦长最长与最短的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中,表示同一函数的是( )
A.
B.y=|1﹣x|和
C. 和y=x+1
D.y=x0和y=1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(用空间向量坐标表示解答)已知正三棱柱ABC﹣A1B1C1的各棱长都是4,E是BC的中点,F在CC1上,且CF=1.

(1)求证:EF⊥A1C;
(2)求二面角C﹣AF﹣E的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥P﹣ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD= AD,设E、F分别为PC、BD的中点.

(1)求证:EF∥平面PAD;
(2)求证:面PAB⊥平面PDC;
(3)求二面角B﹣PD﹣C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2﹣1=0,x∈R},
(1)若A∩B=A∪B,求实数a的值;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,当x∈[0,+∞)时,f(x)=2x﹣2,则不等式f(log2x)>0的解集为( )
A.(0,
B.( ,1)∪(2,+∞)
C.(2,+∞)
D.(0, )∪(2,+∞)

查看答案和解析>>

同步练习册答案