精英家教网 > 高中数学 > 题目详情

已知:集合A={x|0≤x≤3},B={x|x2-x-a(a-1)≤0}.若A⊆B,求实数a的取值范围.

解:B:(x-a)[x-(1-a)]≤0. (2分)
1°.时,B:a≤x≤1-a,A⊆B.则
∴a≤-1 (6分)
2°.时,φ (8分)
3°.时,B:1-a≤x≤a,A⊆B.则,∴a≥3
由1°,2°,3°得,a∈(-∞,-2]∪[3,+∞). (12分)
分析:先化简求出集合B,对参数a进行分类讨论,根据A是B的子集建立不等关系,解之即可求出参数a的范围.
点评:本题考查集合间的关系的应用,考查数形结合思想和分类讨论思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:集合A={x,y},B={2,2y},若A=B,则x+y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:集合A={x|y=
1
4-x2
}
,集合B={y|y=2x}.
(1)求集合A∪B,A∩(?RB)(R是实数集);
(2)若不等式3x2+mx+n<0的解集是A,求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:集合A={ x|2<x≤4},集合B={ x|x2-2x<3},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

(A组)已知:集合A={x|
1x-2
>0,x∈R}
,B={x||3x-4|<5,x∈R},C={x|x2-(a+1)x+a>0,x∈R}.
(1)求A∪B,CRA∩B;
(2)若(CRA∩B)∪C=R,求实数a的取值范围.
( B 组)已知:集合A={x|x2+3x-4>0},B={x|x2-(2+a)x+2a<0}
(1)求A、B;
(2)若a<2,求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•虹口区一模)已知:集合A={x|0≤x≤3},B={x|x2-x-a(a-1)≤0}.若A⊆B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案