【题目】已知椭圆过点,其左、右两个焦点分别为,,短轴的一个端点为,且.
(1)求的平分线所在的直线方程;
(2)设直线:与椭圆交于不同的两点,.且为坐标原点,若,求的面积的最大值.
科目:高中数学 来源: 题型:
【题目】已知椭圆过点且离心率为.
(1)求椭圆的方程;
(2)如图所示,设椭圆的右顶点为,,是椭圆上异于点的两点,直线,的斜率分别为,,若,试判断直线是否经过一个定点?若是,则求出该定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】写算,是一种格子乘法,也是笔算乘法的一种,用以区别筹算与珠算,它由明代数学家吴敬在其撰写的《九章算法比类大全》一书中提出,是从天元式的乘法演变而来.例如计算,将被乘数89计入上行,乘数65计入右行.然后以乘数65的每位数字乘被乘数89的每位数字,将结果计入相应的格子中,最后从右下方开始按斜行加起来,满十向上斜行进一,如图,即得5785.类比此法画出的表格,若从表内(表周边数据不算在内)任取一数,则恰取到奇数的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果两个方程的曲线经过若干次平移或对称变换后能够完全重合,则称这两个方程为“互为镜像方程对”,给出下列四对方程:
①与②与
③与④与
则“互为镜像方程对”的是( )
A.①②③B.①③④C.②③④D.①②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,上顶点为,右顶点为.若(为坐标原点)的三个内角大小成等差数列.
(1)求椭圆的离心率;
(2)直线与椭圆交于两点,设直线,若面积的最大值为,且该椭圆短轴长小于焦距,求椭圆的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,点在轴负半轴上,以为边做菱形,且菱形对角线的交点在轴上,设点的轨迹为曲线.
(1)求曲线的方程;
(2)过点,其中,作曲线的切线,设切点为,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,(1)小问7分,(2)小问5分)
设函数
(1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程;
(2)若在上为减函数,求的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com