精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=$\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}x}&{x>0}\\{x+6}&{x≤0}\end{array}}$,则f(f(-4))的值是-1.

分析 直接利用分段函数的解析式,由里及外逐步求解即可.

解答 解:函数f(x)=$\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}x}&{x>0}\\{x+6}&{x≤0}\end{array}}$,则f(f(-4))=f(-4+6)=f(2)=${log}_{\frac{1}{2}}2$=-1.
故答案为:-1.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{{{a^x}-1}}{{{a^x}+1}}$(a>0,a≠1)
(1)判断函数的奇偶性,并证明;
(2)求该函数的值域;
(3)判断f(x)在R上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设a=log0.32,b=log32,c=20.3,则这三个数的大小关系是(  )
A.b>c>aB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在边长为2的菱形ABCD中,∠BAD=$\frac{2π}{3}$,$\overrightarrow{AP}=\frac{1}{3}\overrightarrow{AD}$,则$\overrightarrow{PB}$$•\overrightarrow{PD}$的值为$-\frac{12}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,为奇函数的是(  )
A.y=2x+$\frac{1}{2^x}$B.y=x,x∈(0,1]C.y=x3+xD.y=x3+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是(  )
A.y=x3B.$y=|{log_2^{\;}x}|$C.y=2|x|D.y=-x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=a-$\frac{2}{{2}^{x}+1}$是奇函数(a∈R).
(1)求实数a的值;
(2)求函数y=f(x)的值域;
(3)试判断函数f(x)在(-∞,+∞)上的单调性,并用定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图是一个奖杯的三视图,试根据奖杯的三视图计算它的表面积和体积(尺寸如图,单位:cm,π取3.14,结果分别精确到1cm2,1cm3,可用计算器).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设命题P:?x∈R,x2>1,则?P为?x∈R,x2≤1.

查看答案和解析>>

同步练习册答案