精英家教网 > 高中数学 > 题目详情
18.函数f(x)的定义域为[-1,1],图象如图1所示:函数g(x)的定义域为[-2,2],图象如图2所示,方程f[g(x)]=0有m个实数根,方程g[f(x)]=0有n个实数根,则m+n=(  )
A.14B.12C.10D.8

分析 结合函数图象可知,若f(g(x))=0,则g(x)=-1或g(x)=0或g(x)=1;若g(f(x))=0,则f(x)=-1.5或f(x)=1.5或f(x)=0;从而再结合图象求解即可.

解答 解:由图象可知,若f(g(x))=0,则g(x)=-1或g(x)=0或g(x)=1;
由图2知,g(x)=-1时,x=-1或x=1;
g(x)=0时,x的值有3个;g(x)=1时,x=2或x=-2;故m=7;
若g(f(x))=0,则f(x)=-1.5或f(x)=1.5或f(x)=0;
由图1知,f(x)=1.5与f(x)=-1.5各有2个;
f(x)=0时,x=-1,x=1或x=0;故n=7;
故m+n=14;
故选:A.

点评 本题考查了方程的根与函数的图象的关系应用及数形结合的思想应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|5x>1},集合$B=\left\{{x\left|{{{log}_{\frac{1}{3}}}({x+1})>-1}\right.}\right\}$.
(Ⅰ)求(∁RA)∩B;
(Ⅱ)若集合C={x|x<a},满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若sinθ=$\frac{4}{5}$,且θ为第二象限角则tanθ的值等于-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在独立性检验中,统计量Χ2有两个临界值,3.841和6.635,当Χ2>3.841时,有95%的把握说明两个事件有关,当Χ2>6.635时,有99%的把握说明两个事件有关,当Χ2<3.841时,认为两个事件无关,在一项打鼾与患心脏病的调查中,共调出来2000人,经计算Χ2>20.87,根据这一数据分析,认为打鼾与患心脏病之间(  )
A.有95%的把握认为两者有关B.约有95%的打鼾者患心脏病
C.有99%的把握认为两者有关D.约有95%的打鼾者患心脏病

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.?用辗转相除法求5280和12155的最大公约数,并用更相减损术检验.?先将412(5)化成十进制的数,然后用“除k取余法”再化成七进制的数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线l的方程为$|{\begin{array}{l}1&0&2\\ x&2&3\\ y&{-1}&2\end{array}}|=0$,则直线l的一个法向量是(  )
A.(1,2)B.(2,1)C.(-1,2)D.(2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|x≤3},B={x|x2>4},则A∩B=(  )
A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|x<-2或2<x≤3}D.{x|x<-2或2<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=2x(x+a)-1在区间[0,1]上有零点,则实数a的取值范围是[-$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知偶函数f(x)(x≠0)的导函数为f′(x),且满足f(1)=0,当x>0时,xf′(x)<2f(x),则使f(x)>0成立的x的取值范围为(-1,0)∪(0,1).

查看答案和解析>>

同步练习册答案