精英家教网 > 高中数学 > 题目详情
17.已知命题:?x∈R,则2x2+2x+$\frac{1}{2}$<0的否定是(  )
A.?x∈R,则2x2+2x+$\frac{1}{2}$≥0B.?x0∈R,则2x02+2x0+$\frac{1}{2}$≥0
C.?x0∈R,则2x02+2x0+$\frac{1}{2}$<0D.?x∈R,则2x2+2x+$\frac{1}{2}$>0

分析 根据全称命题的否定要改成存在性命题的原则,可写出原命题的否定

解答 解:原命题为“?x∈R,则2x2+2x+$\frac{1}{2}$<0,
∵原命题为全称命题
∴其否定为存在性命题,且不等号须改变
∴原命题的否定为:?x0∈R,则2x02+2x0+$\frac{1}{2}$≥0
故选:B

点评 本题考查命题的否定,本题解题的关键是熟练掌握全称命题:“?x∈A,P(x)”的否定是特称命题:“?x∈A,非P(x)”,熟练两者之间的变化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知圆的方程为x2+y2-6x=0.则该圆的圆心和半径分别是(  )
A.(0,0),r=3B.(3,0),r=3C.(-3,0),r=3D.(3,0)r=9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知集合M={x|x2+x-6=0},N={y|ay+2=0,a∈R},若满足M∩N=N的所有实数a形成集合为A,则A的子集有个8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平面四边形ABCD中,AD=AB=$\sqrt{2}$,CD=CB=$\sqrt{5}$,且AD⊥AB,现将△ABD沿着对角线BD翻折成△A′BD,则在△A′BD折起至转到平面BCD内的过程中,直线A′C与平面BCD所成的最大角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.平面内有两定点A、B及动点P,如果|PA|+|PB|=2a(a为常数),那么P点的轨迹是(  )
A.椭圆B.双曲线C.抛物线D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.双曲线$\frac{y^2}{9}-\frac{x^2}{4}=1$的渐近线方程为y=±$\frac{3}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.顶点在原点,焦点是(0,-2)的抛物线方程是(  )
A.x2=8yB.x2=-8yC.y2=8xD.y2=-8x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.从0,1,2,3,4,5,6这七个数字中选两个奇数和两个偶数,组成没有重复数字的四位数的个数为(  )
A.432B.378C.180D.362

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.棱长为1的正方体ABCD-A1B1C1D1中,点P在线段BD上运动.
(Ⅰ)求证:AC⊥平面BB1P;
(Ⅱ)若BP=1,设异面直线B1P与AC1所成的角为θ,求cosθ的值.

查看答案和解析>>

同步练习册答案