精英家教网 > 高中数学 > 题目详情
已知f(x)=
1-x2
,0<x≤1
-
1-x2
,-1≤x<0
,且0<|m|<1,0<|n|<1,mn<0,则使不等式f(m)+f(n)>0成立的m和n还应满足的条件为(  )
A、m>nB、m<n
C、m+n>0D、m+n<0
分析:本题是一个分段函数,由题意知应先确定m,n的正负,得出关于,m,n的不等式,化简变形根据符号来确定m,n所应满足的另外的一个关系.
解答:解:不妨设m>0,n<0,
f(m)+f(n)=
1-m2
-
1-n2
=
(n-m)(n+m)
1-m2
+
1-n2

由n-m<0,f(m)+f(n)>0,
故m+n<0
故应选D.
点评:本题考查的考点是分段不等式求参数的范围,主要是训练变形观察的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是可导的函数,且f′(x)<f(x)对于x∈R恒成立,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(
x
+1)=x+2
,求函数f(x)的解析式;
(2)若二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1-x
+
x-1
,则它是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(
x
-1)=x+
x
,求函数f(x)的解析式.
(2)已知f(x)+2f(-x)=x2+2x,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(0,+∞)上的函数,且对任意正数x,y都有f(xy)=f(x)+f(y),且当x>1时,f(x)>0.
(1)证明f(x)在(0,+∞)上为增函数;
(2)若f(3)=1,集合A={x|f(x)>f(x-1)+2},B={x|f(
(a+1)x-1x+1
)>0,a∈R}
,A∩B=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案