【题目】若任意两圆交于不同两点、,且满足,则称两圆为“心圆”,已知圆:与圆:为“心圆”,则实数的值为( )
A. B. C. 2 D.
【答案】B
【解析】
由,可得(x12﹣x22)+(y12﹣y22)=0,将A(x1,y1)、B(x2,y2),代入x2+y2﹣4x+2y﹣a2+5=0,两方程相减,可得 (*),将A(x1,y1)、B(x2,y2),代入x2+y2﹣(2b﹣10)x﹣2by+2b2﹣10b+16=0,两方程相减,可得+2b=0,将(*)代入得:+2b=0,即可求出实数b的值.
∵,
∴(x12﹣x22)+(y12﹣y22)=0
将A(x1,y1)、B(x2,y2),代入x2+y2﹣4x+2y﹣a2+5=0得:
x12+y12﹣4x1+2y1﹣a2+5=0…①
x22+y22﹣4x2+2y2﹣a2+5=0…②
①﹣②得:(x12﹣x22)+(y12﹣y22)﹣4(x1﹣x2)+2(y1﹣y2)=0
∴4(x1﹣x2)﹣2(y1﹣y2)=0
∴ …(*)
将A(x1,y1)、B(x2,y2),代入x2+y2﹣(2b﹣10)x﹣2by+2b2﹣10b+16=0得:
x12+y12﹣(2b﹣10)x1﹣2by1+2b2﹣10b+16…③
x22+y22﹣(2b﹣10)x2﹣2by2+2b2﹣10b+16…④
③﹣④得:(x12﹣x22)+(y12﹣y22)﹣(2b﹣10)(x1﹣x2)﹣2b(y1﹣y2)=0
∴(2b﹣10)(x1﹣x2)+2b(y1﹣y2)=0
即:+2b=0,将(*)代入得:+2b=0
解得:b=.
故答案为:B.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1: (t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2 cosθ.
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn , 且有Sn=2bn﹣1.
(1)求{an}、{bn}的通项公式;
(2)若cn=anbn , {cn}的前n项和为Tn , 求Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,直线,且点不在直线上.
(1)若点关于直线的对称点为,求点坐标;
(2)求证:点到直线的距离;
(3)当点在函数图像上时,(2)中的公式变为,
请参考该公式,求 的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切,且被轴截得的弦长为,圆的面积小于13.
(1)求圆的标准方程;
(2)若点,点是圆上一点,点是的重心,求点的轨迹方程;
(3)设过点的直线与圆交于不同的两点,,以,为邻边作平行四边形.是否存在这样的直线,使得直线与恰好平行?如果存在,求出的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,函数.
(1)当时,解不等式;
(2)若关于的方程的解集中恰有两个元素,求的取值范围;
(3)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com