精英家教网 > 高中数学 > 题目详情

【题目】若任意两圆交于不同两点,且满足,则称两圆为“心圆”,已知圆与圆为“心圆”,则实数的值为( )

A. B. C. 2 D.

【答案】B

【解析】

,可得(x12x22+y12y22)=0,将Ax1y1)、Bx2y2),代入x2+y24x+2ya2+50,两方程相减,可得 *),将Ax1y1)、Bx2y2),代入x2+y2﹣(2b10x2by+2b210b+160,两方程相减,可得+2b0,将(*)代入得:+2b0,即可求出实数b的值.

∴(x12x22+y12y22)=0

Ax1y1)、Bx2y2),代入x2+y24x+2ya2+50得:

x12+y124x1+2y1a2+50…①

x22+y224x2+2y2a2+50…②

①﹣②得:(x12x22+y12y22)﹣4x1x2+2y1y2)=0

4x1x2)﹣2y1y2)=0

…(*

Ax1y1)、Bx2y2),代入x2+y2﹣(2b10x2by+2b210b+160得:

x12+y12﹣(2b10x12by1+2b210b+16…③

x22+y22﹣(2b10x22by2+2b210b+16…④

③﹣④得:(x12x22+y12y22)﹣(2b10)(x1x2)﹣2by1y2)=0

∴(2b10)(x1x2+2by1y2)=0

即:+2b0,将(*)代入得:+2b0

解得:b

故答案为:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】记函数的定义域为 )的定义域为.

(1)求

(2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1 (t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2 cosθ.
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn , 且有Sn=2bn﹣1.
(1)求{an}、{bn}的通项公式;
(2)若cn=anbn , {cn}的前n项和为Tn , 求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,直线,且点不在直线上.

(1)若点关于直线的对称点为,求点坐标;

(2)求证:点到直线的距离

(3)当点在函数图像上时,(2)中的公式变为

请参考该公式,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切,且被轴截得的弦长为,圆的面积小于13.

(1)求圆的标准方程;

(2)若点,点是圆上一点,点的重心,求点的轨迹方程;

(3)设过点的直线与圆交于不同的两点,以为邻边作平行四边形.是否存在这样的直线,使得直线恰好平行?如果存在,求出的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)若函数上为减函数,求实数的最小值;

2)若存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为平行四边形的四棱锥中,平面ABCD,且,点EPD的中点.

求证:

求证:平面AEC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)当时,解不等式

(2)若关于的方程的解集中恰有两个元素,求的取值范围;

(3)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.

查看答案和解析>>

同步练习册答案