精英家教网 > 高中数学 > 题目详情

【题目】下列说法正确的是(  )

A. 若命题都是真命题,则命题“”为真命题

B. 命题“”的否定是“,

C. 命题:“若,则”的否命题为“若,则

D. ”是“”的必要不充分条件

【答案】B

【解析】

A.由复合命题的真假进行判断;

B.利用全称命题的否定即可判断出;

C 利用命题的否命题形式即可判断出;

D.由充分必要条件的定义进行判断.

A.命题p,¬q都是真命题,则命题q为假命题,因此“pq”为假命题,因此不正确;

B.“xR2x0”的否定是“x0R0”,正确;

C “若xy0,则x0y0”的否命题为“若xy0x0y0”,因此不正确;

D.“x=﹣1”是“x25x60”的充分不必要条件,因此不正确,

综上可得:只有B正确.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市举行中学生诗词大赛,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.

Ⅰ)求获得复赛资格的人数;

Ⅱ)从初赛得分在区间的参赛者中,利用分层抽样的方法随机抽取人参加学校座谈交流,那么从得分在区间各抽取多少人?

Ⅲ)从(Ⅱ)抽取的人中,选出人参加全市座谈交流,设表示得分在区间中参加全市座谈交流的人数,求的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元。

若该商场周初购进20台空调器,求当周的利润单位:元关于当周需求量n单位:台,的函数解析式

该商场记录了去年夏天共10周空调器需求量n单位:台,整理得下表:

周需求量n

18

19

20

21

22

频数

1

2

3

3

1

以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润单位:元,求X的分布列及数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台机床生产的零件各100件进行检测,检测结果统计如下:

测试指标

[8590

[9095

[95100

[100105

[105110

甲机床

8

12

40

32

8

乙机床

7

18

40

29

6

1)试分别估计甲机床、乙机床生产的零件为优品的概率;

2)甲机床生产1件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元,假设甲机床某天生产50件零件,请估计甲机床该天的利润(单位:元);

3)从甲、乙机床生产的零件指标在[9095)内的零件中,采用分层抽样的方法抽取5件,从这5件中任意抽取2件进行质量分析,求这2件都是乙机床生产的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前五年平均每台设备每年的维护费用大致如表:

年份

1

2

3

4

5

维护费万元

y关于t的线性回归方程;

若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 (a>0,b>0)的右焦点为,右顶点为A,过F作的垂线与双曲线交于两点,过分别作的垂线,两垂线交于点,若到直线的距离小于则双曲线的渐近线斜率的取值范围是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点At1)为函数yax2+bx+4ab为常数,且a≠0)与yx图象的交点.

1)求t

2)若函数yax2+bx+4的图象与x轴只有一个交点,求ab

3)若1≤a≤2,设当x≤2时,函数yax2+bx+4的最大值为m,最小值为n,求mn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业2017年的纯利润为500万元,因设备老化等原因,企业的生产能力逐年下降,若不能进行技术改造,预测从2018年起每年比上一年纯利润减少20万元,2018年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第年(以2018年为第一年)的利润为万元(为正整数).

(1)设从今年起的前年,若该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元(须扣除技术改造资金),求的表达式;

(2)依上述预测,从2018年起该企业至少经过多少年,进行技术改造后的累计利润超过不进行技术改造的累计纯利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知直线为参数),曲线为参数),以原点为极点, 轴的正半轴为极轴建立坐标系.

(1)写出直线的普通方程与曲线的极坐标方程;

(2)设直线与曲线交于 两点,求的面积.

查看答案和解析>>

同步练习册答案