精英家教网 > 高中数学 > 题目详情

已知f(x)=,则f()+f(-)=(  )

A.-2                             B.4    

C.2                               D.-4

解析:∵f(-)=f(-+1)=f(-)=f(-+1)=f(),∴f()+f(-)=f()+f()=2×+2×=4.

答案:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=,则f(-1)+f(4)的值为(  )

A.-7                                  B.3

C.-8                                  D.4

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省肇庆市高三复习必修一数学(B) 题型:选择题

已知f(x)=,则f[f()]的值是(    )

A.-1       B.-2       C.       D.-

 

查看答案和解析>>

科目:高中数学 来源:2010年广西省高一上学期期中考试数学试卷 题型:填空题

已知f(x)=,则f()+f()+f()+f(1)+f(2)+f(3)+f(4)=           

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三8月月考理科数学试卷(解析版) 题型:解答题

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

同步练习册答案