精英家教网 > 高中数学 > 题目详情

【题目】已知直线的参数方程为为参数,),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.

(1)若直线被圆截得的弦长为时,求的值.

(2)直线的参数方程为为参数),若,垂足为,求点的极坐标.

【答案】(1)(2).

【解析】

(1)把直线的参数方程通过消参过程,化为直角坐标方程;利用公式把圆的极坐标方程化为直角坐标方程,利用弦心距、弦长和圆关径的关系,建立等式,求出的值。

(2)把直线的参数方程通过消参过程,化为直角坐标方程,根据这一条件,可以确定,两直线方程联立,求出点的坐标,最后化成极坐标。

(1)由为参数)得.

,∴由

,即圆心为

到直线距离为

又弦长为,故

因为,所以解得.

(2)由的方程可得

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出09之间取整数值的随机数,指定01表示没有击中目标,234567 89表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:

7527 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )

A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件

B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高

C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致

D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点P与两个定点O(0,0),A(3,0)的距离的比值为2,点P的轨迹为曲线C.

(1)求曲线C的轨迹方程

(2)过点(﹣1,0)作直线与曲线C交于A,B两点,设点M坐标为(4,0),求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,当时,,给出下列命题:

①当时, ②函数有3个零点

的解集为,都有

其中正确命题的个数是( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汉中市2019年油菜花节在汉台区举办,组委会将甲、乙等6名工作人员分配到两个不同的接待处负责参与接待工作,每个接待处至少2人,则甲、乙两人不在同一接待处的分配方法共有( )

A. 12种B. 22种C. 28种D. 30种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,对一切,点都在函数的图像上.

(1)证明:当时,;

(2)求数列的通项公式;

(3)设为数列的前n项的积,若不等式对一切成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为圆上一动点,圆心关于轴的对称点为,点分别是线段上的点,且.

(1)求点的轨迹方程;

(2)直线与点的轨迹只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于两点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当a=2,求函数的极值;

(2)若函数有两个零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案