【题目】服装销售商甲和乙欲销某品牌服装制造企业生产的服装. 该企业的设计部门在无任何有关甲和乙销售信息的情况下,随机地为他们提供了种不同设计的款式,由甲和乙各自独立地选定自己认可的那些款式. 则至少有一个款式为甲和乙共同认可的概率为多少?
【答案】
【解析】
记种款式的集合为,分别记甲和乙各自选中的款式的集合为和. 则,.
把甲和乙的选择合称为一个选择方案,记为.
先证明:任何一个选择方案发生的概率为.
事实上,因设计部门关于甲和乙的销售情况无任何信息,所以,每一款式被甲或乙认可还是否定,他们的概率均为.
若甲选中了个款式,同时也否定了其余个款式,则甲的这一选择发生的概率为.
对于乙也完全一样.
又因为甲和乙的选择是独立进行的,所以,任一选择方案发生的概率为.
以记所有的选择方案发生的概率. 则所求的概率为.
为计算,需计算所有满足的选择方案的个数.
按所含元素的个数进行分类.
若,则是这一元集合中的任一子集,相应的即为其补集.
于是,当时,所有可能的选择方案数为.
从而,由加法原理可知,当时,所有可能的选择方案数为.
故,.
科目:高中数学 来源: 题型:
【题目】如图,在矩形中,,,以,为焦点的椭圆:恰好过,两点.
(1)求椭圆的方程;
(2)已知为原点,直线:与轴交于点,与椭圆相交于、两点,且、在轴异侧,若,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列叙述:①甲只能承担第四项工作;②乙不能承担第二项工作;③丙可以不承担第三项工作;④丁可以承担第三项工作;其中错误的是______.
一 | 二 | 三 | 四 | 五 | |
甲 | 15 | 17 | 14 | 17 | 15 |
乙 | 22 | 23 | 21 | 20 | 20 |
丙 | 9 | 13 | 14 | 12 | 10 |
丁 | 7 | 9 | 11 | 9 | 11 |
戊 | 13 | 15 | 14 | 15 | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当数值大于或等于20.5时,我们说体重较重,当数值小于20.5时,我们说体重较轻,身高大于或等于我们说身高较高,身高小于170cm我们说身高较矮.
(1)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图,请根据所得信息,完成下述列联表,并判断是否有的把握认为男生的身高对指数有影响.
身高较矮 | 身高较高 | 合计 | |
体重较轻 | |||
体重较重 | |||
合计 |
(2)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
体重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求解释变量(身高)对于预报变量(体重)变化的贡献值(保留两位有效数字);
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
体重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
残差 | 0.1 | 0.3 | 0.9 |
②通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过重新采集发现,该组数据的体重应该为.请重新根据最最小二乘法的思想与公式,求出男体育特长生的身高与体重的线性回归方程.
(参考公式)
,,,,.
(参考数据)
,,,,.
0.10
0.05
0.01
0.005
2.706
3.811
6.635
7.879
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为抛物线:的焦点,抛物线上的点满足(为坐标原点),且.
(1)求抛物线的方程;
(2)若直线:与抛物线交于不同的两点,是否存在实数及定点,对任意实数,都有?若存在,求出的值及点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】指出下列命题是全称量词命题还是存在量词命题,并判断它们的真假.
(1)x∈N,2x+1是奇数;
(2)存在一个x∈R,使=0;
(3)对任意实数a,|a|>0;
(4)有一个角α,使sinα=.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com