精英家教网 > 高中数学 > 题目详情

【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:

售出水量(单位:箱)

7

6

6

5

6

收入(单位:元)

165

142

148

125

150

学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.

(1)若成线性相关,则某天售出9箱水时,预计收入为多少元?

(2)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望;

附:回归方程,其中

【答案】(1)206;(2).

【解析】试题分析:(1)先求出君子,代入公式求 ,再求线性回归方程自变量为9的函数值,(2)先确定随机变量取法,在利用概率乘法求对应概率,列表可得分布列,根据数学期望公式求期望.

试题解析:

(1),经计算,所以线性回归方程为

时,的估计值为206元;

(2)的可能取值为0,300,500,600,800,1000;

0

300

500

600

800

1000

所以的数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】运动员参加射击比赛,每人射击4次(每次射一发),比赛规定:全不中得0分,只中一弹得15分,中两弹得40分,中三弹得65分,中四弹得100分.已知某一运动员每一次射击的命中率为,则他的得分期望为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种机器零件转速在符合要求的范围内使用时间随机器运转速度的变化而变化,某检测员随机收集了20个机器零件的使用时间与转速的数据,列表如下:

机器转速(转/分)

189

193

190

185

183

202

187

203

192

201

零件使用时间(月)

43

33

39

37

38

37

38

35

38

35

机器转速(转/分)

193

197

191

186

191

188

185

204

201

189

零件使用时间(月)

37

40

41

37

35

37

42

36

34

40

(Ⅰ)若“转速大于200转/分”为“高速”,“转速不大于200转/分”为“非高速”,“使用时间大于36个月”的为“长寿命”,“使用时间不大于36个月”的为“非长寿命”,请根据上表数据完成下面的列联表:

高速

非高速

合计

长寿命

非长寿命

合计

(Ⅱ)根据(Ⅰ)中的列联表,试运用独立性检验的思想方法:能否在犯错误的概率不超过0.01的前提下认为零件使用寿命的长短与转速高低之间的关系.

参考公式:,其中.

参考数据:

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年3月14日,“共享单车”终于来到芜湖,共享单车又被亲切称作“小黄车”是全球第一个无桩共享单车平台,开创了首个“单车共享”模式.相关部门准备对该项目进行考核,考核的硬性指标是:市民对该项目的满意指数不低于,否则该项目需进行整改,该部门为了了解市民对该项目的满意程度,随机访问了使用共享单车的名市民,并根据这名市民对该项目满意程度的评分(满分分),绘制了如下频率分布直方图:

(I)为了了解部分市民对“共享单车”评分较低的原因,该部门从评分低于分的市民中随机抽取人进行座谈,求这人评分恰好都在的概率;

(II)根据你所学的统计知识,判断该项目能否通过考核,并说明理由.

(注:满意指数=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=+bx+c,

(1)若f(x)在(-∞,+∞)上是增函数,求b的取值范围;

(2)若f(x)在x=1处取得极值,且x[-1,2]时,f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线与直线垂直.

(1)求函数的极值;

(2)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)= 其中a,b∈R.若 = ,则a+3b的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;

②设有一个回归方程,若变量增加一个单位时,则平均增加5个单位;

③线性回归方程所在直线必过

④曲线上的点与该点的坐标之间具有相关关系;

⑤在一个列联表中,由计算得,则其两个变量之间有关系的可能性是.

其中错误的是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为(
A.①②
B.③④
C.①③
D.②④

查看答案和解析>>

同步练习册答案