精英家教网 > 高中数学 > 题目详情
如图,在正三棱柱ABC-A1B1C1中,点D,D1分别为棱BC,B1C1的中点.
(1)求证:直线A1D1∥平面ADC1
(2)求证:平面ADC1⊥平面BCC1B1
(3)设底面边长为2,侧棱长为4,求二面角C1-AD-C的余弦值.
分析:(1)利用线面平行的判定定理,只需证明平面外的直线平行于平面内的一条直线,证明A1D1∥AD即可;
(2)利用面面垂直的判定定理,只需证明一个平面经过另一个平面的垂直,证明AD⊥平面BCC1B1即可;
(3)先判断∠C1DC为二面角C1-AD-C的平面角,再在Rt△C1CD中求解即可.
解答:(1)证明:连接DD1,∵点D1为棱B1C1的中点,
DD1
.
CC1
.
AA1
,所以四边形AA1D1D为平行四边形
∴A1D1∥AD.  …(3分)
又AD?平面ADC1,A1D1?平面ADC1
∴A1D1∥平面ADC1…(5分)
(2)证明:在正三棱柱ABC-A1B1C1中,
∵CC1⊥底面ABC,又AD?底面ABC
∴AD⊥CC1…(7分)
∵点D为棱BC的中点,
∴AD⊥BC,…(8分)
CC1?平面BCC1B1,BC?平面BCC1B1,CC1∩BC=C,
∴AD⊥平面BCC1B1…(9分)
又∵AD?平面ADC1
∴平面ADC1⊥平面BCC1B1…(10分)
(3)解:由(1)得AD⊥平面BCC1B1
∴AD⊥BC,AD⊥C1D
∴∠C1DC为二面角C1-AD-C的平面角 …(12分)
又CD=1,CC1=4,∴C1D=
17

在Rt△C1CD中,cos∠C1DC=
CD
C1D
=
1
17
=
17
17

∴二面角C1-AD-C的余弦值为
17
17
.…(14分)
点评:本题以正三棱柱为载体,考查线面、面面位置关系,考查面面角,解题的关键是正确掌握线面平行、面面垂直的判定定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在正三棱柱ABC-A1B1C1中,AB=1,若二面角C-AB-C1的大小为60°,则点C到平面C1AB的距离为(  )
A、
3
4
B、
1
2
C、
3
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,若AD与平面AA1CC1所成的角为a,则sina=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正三棱柱ABC-A1B1C1中,D、E、G分别是AB、BB1、AC1的中点,AB=BB1=2.
(Ⅰ)在棱B1C1上是否存在点F使GF∥DE?如果存在,试确定它的位置;如果不存在,请说明理由;
(Ⅱ)求截面DEG与底面ABC所成锐二面角的正切值;
(Ⅲ)求B1到截面DEG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正三棱柱ABC-A1B1C1中,AA1=4,AB=2,M是AC的中点,点N在AA1上,AN=
14

(Ⅰ)求BC1与侧面ACC1A1所成角的大小;
(Ⅱ)求二面角C1-BM-C的正切值;
(Ⅲ)证明MN⊥BC1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)如图,在正三棱柱ABC一DEF中,AB=2,AD=1,P是CF的延长线上一点,过A、B、P三点的平面交FD于M,交EF于N.
(I)求证:MN∥平面CDE:
(II)当平面PAB⊥平面CDE时,求三梭台MNF-ABC的体积.

查看答案和解析>>

同步练习册答案