精英家教网 > 高中数学 > 题目详情

【题目】如图F1F2为双曲线C的左、右焦点,动点P(x0y0)(y0≥1)在双曲线C的右支上.设∠F1PF2的平分线与x轴、y轴分别交于点M(m,0)、N.

(1)m的取值范围;

(2)设过点F1N的直线l与双曲线C交于DE两点,求F2DE面积的最大值.

【答案】(1) (0,]. (2) 4

【解析】

(1)依题意有F1(-,0),F2(,0).

.

由点M在∠F1PF2的平分线上知

.

y0≥1

.

.

.

结合x0≥2.

从而,m的取值范围是(0,].

(2)由(1)知

.

x=0 .

故点.

.

与双曲线方程联立消去x

.

D(x1y1),E(x2y2). 1

.

y0≥1,.

.于是,t≥1.

.

t=1,即点P(2,1)时,F2DE面积取最大值4 .

从而,F2DE面积的最大值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在棱长为的正方体中,分别是的中点.

)求异面直线所成角的余弦值.

)在棱上是否存在一点,使得二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是( )

A. 为真命题,则为真命题 B. 恒成立

C. 命题“”的否定是“ D. 命题“若”的逆否命题是“若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题:

,则的逆否命题为真命题

函数在区间上为增函数的充分不必要条件

③若为假命题,则均为假命题

④对于命题,则为:

其中真命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且asin B=-bsin.

(1)求A;

(2)若△ABC的面积S=c2,求sin C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 f(x)的最小值为0.

(1)a的值

(2)若数列满足a1=1,an+l=f(an)+2(nZ+),Sn=[a1]+[a2]+…+[an],[m]表示不超过实数m的最大整数,求Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点是.问:是否存在内接等腰直角三角形,该三角形的一条直角边过点?如果存在,存在几个?如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左、右顶点分别为AB,离心率为,点P1)为椭圆上一点.

1)求椭圆C的标准方程;

2)如图,过点C01)且斜率大于1的直线l与椭圆交于MN两点,记直线AM的斜率为k1,直线BN的斜率为k2,若k1=2k2,求直线l斜率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求函数的单调区间;

(Ⅱ)若上恒成立,求正数的取值范围;

(Ⅲ)证明:.

查看答案和解析>>

同步练习册答案