精英家教网 > 高中数学 > 题目详情
20.已知抛物线y2=2px(p>0)的焦点F位于直线x+y-1=0上.
(Ⅰ)求抛物线方程;
(Ⅱ)过抛物线的焦点F作倾斜角为45°的直线,交抛物线于A,B两点,求线段AB的中点C的横坐标.

分析 (Ⅰ)先求出焦点进而求出P,从而求出抛物线的方程;
(Ⅱ)先根据抛物线的焦点坐标和直线的倾斜角可表示出直线AB的方程,然后联立直线方程与抛物线方程可得到两根之和与两根之积,进而可得到中点C的横坐标

解答 解:(Ⅰ)∵抛物线y2=2px(p>0)的焦点F位于直线x+y-1=0上,
∴F(1,0)
∴抛物线方程为y2=4x;
(Ⅱ)抛物线y2=4x的焦点坐标为(1,0),准线方程为x=-1,
直线AB的方程为y=x-1,
设点A(x1,y1)、B(x2,y2).
将y=x-1代入y2=4x得x2-6x+1=0.
则x1+x2=6,x1•x2=1.
故中点C的横坐标为3.

点评 本题主要考查直线与抛物线的综合问题和两点间的距离公式.直线与圆锥曲线的综合问题一直都是高考的重点,要着重复习.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD的侧面PAD是正三角形,底面ABCD为菱形,A点E为AD的中点,若BE=PE.
(1)求证:PB⊥BC;
(2)若∠PEB=120°,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$=(sinωx,cosωx),$\overrightarrow{b}$=(cosωx,$\sqrt{3}$cosωx)(ω>0),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-$\frac{\sqrt{3}}{2}$的图象的一个对称中心与和它相邻的一条对称轴之间的距离为$\frac{π}{4}$.
(I)求函数f(x)的单调递增区间
(II) 在△ABC中,角A、B、C所的对边分别是a、b、c,若f(A)=$\frac{\sqrt{3}}{2}$且a=1,b=$\sqrt{2}$,求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2x|x-a|(其中a∈R).
(1)当a=1时,求函数f(x)的值域;
(2)若y=f(x)在[0,2]上的最小值为-1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,正四棱锥S-ABCD的底面边长为2,E,F分别为SA,SD的中点.
(1)证明:EF∥平面SBC;
(2)若平面BEF⊥平面SAD,求S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.由曲线y=$\frac{1}{x}$,直线y=x及x=3所围成的图形的面积是(  )
A.4-ln3B.8-ln3C.4+ln3D.8+ln3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某工厂为了增加其产品的销售量,调查了该产品投入的广告费用x与销售量y的数据,如表:
广告费用x(万元)23456
销售量y(万件)578911
由散点图知可以用回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$来近似刻画它们之间的关系.
(Ⅰ)求回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)在(Ⅰ)的回归方程模型中,请用相关指数R2说明,广告费用解释了百分之多少的销售量变化?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$;R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\overline{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题“?x>1,$\sqrt{x}$>1”的否定是(  )
A.?x0>1,$\sqrt{{x}_{0}}$≤1B.?x0>1,$\sqrt{{x}_{0}}$≤1C.?x0≤1,$\sqrt{{x}_{0}}$≤1D.?x0≤1,$\sqrt{{x}_{0}}$≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某校高一(1)班共有40人,学号依次为1,2,3,…,40,现用系统抽样的方法抽取一个容量为5的样本,若学号为2,10,18,34的同学在样本中,则还有一个同学的学号应为(  )
A.27B.26C.25D.24

查看答案和解析>>

同步练习册答案