精英家教网 > 高中数学 > 题目详情
如图,已知矩形ABCD,PA⊥平面ABCD于A,M,N分别为AB,PC的中点
(1)求证:MN⊥AB;
(2)若平面PDC与平面ABCD所成的二面角为θ,能否确定θ,使直线MN是异面直线AB与PC的公垂线?若能确定,求出的值;若不能确定,说明理由.
证明:
(1)见解析;
(2)由已知角PDA就是平面PDC与平面ABCD所成二面角平面角直角三角形PDA中设AD=a,则PD=,取CD中点G,直角三角形MNG中,角MGN=,MG=,于是,得能确定,使MN是异面直线AB与PC的公垂线  
(1)取CD中点G,连接MG,NG,则面MNG∥面PAD,易正明AB⊥面PAD,故AB⊥面MNE,进而AB⊥MN; 直线MN是异面直线AB与PC的公垂线,只需再AB⊥PC即可。
证明:
(1)略
(2)由已知角PDA就是平面PDC与平面ABCD所成
成二面角平面角直角三角形PDA中设AD=a,则PD=
取CD中点G,直角三角形MNG中,角MGN=,MG=
于是,得能确定,使MN是异面直线AB与PC的公垂线  
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,已知平面平面分别是棱长为1与2的正三角形,//,四边形为直角梯形,//,点的重心,中点,

(Ⅰ)当时,求证://平面
(Ⅱ)若直线所成角为,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在三棱锥中,平面平面的中点.
(1) 证明:
(2) 求所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥中,底面是菱形,,底面的中点,中点。

(1)求证:∥平面
(2)求证:平面⊥平面
(3)求与平面所成的角。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,己知平行四边形ABCD中,∠ BAD = 600,AB=6, AD=3,G为CD中点,现将梯形ABCG沿着AG折起到AFEG。
(I)求证:直线CE//平面ABF;
(II)如果FG⊥平面ABCD求二面B一EF一A的平面角的余弦值. 
(Ⅲ)若直线AF与平面 ABCD所成角为,求证:FG⊥平面ABCD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,均是边长为2的等边三角形,且它们所在平面互相垂直,.
(1)    求证: ||
(2)    求二面角的余弦值。.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是矩形,,且侧面是正三角形,平面平面

(Ⅰ)求证:
(Ⅱ)在棱上是否存在一点,使得二面角的大小为45°.若存在,试求的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面. 考察下列命题,其中真命题是
A.B.,
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P—ABCD中,底面ABCD是边长为4的菱形,且,菱形ABCD的两条对角线的交点为0,PA=PC,PB=PD,且PO=3.点E是线段PA的中点,连接EO、EB、EC.
 
(I)证明:直线OE//平面PBC;
(II)求二面角E-BC-D的大小

查看答案和解析>>

同步练习册答案