精英家教网 > 高中数学 > 题目详情

【题目】已知点,圆,点是圆上一动点, 的垂直平分线与交于点.

1)求点的轨迹方程;

2)设点的轨迹为曲线,过点且斜率不为0的直线交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.

【答案】(1) .(2) .

【解析】【试题分析】(1由于,所以的轨迹为椭圆,利用椭圆的概念可求得椭圆方程.(2)当直线的斜率存在时,设出直线方程和点的坐标,联立直线方程和椭圆方程,写出韦达定理,求得直线的方程,求得其纵截距为,即过.验证当斜率不存在是也过.求出三角形面积的表达式并利用基本不等式求得最大值.

【试题解析】

解:(1)由已知得: ,所以

,所以点的轨迹是以为焦点,长轴长等于4的椭圆,

所以点轨迹方程是.

(2)当存在时,设直线 ,则

联立直线与椭圆得

,所以直线

所以令,得

所以直线过定点,(当不存在时仍适合)

所以的面积 ,当且仅当时,等号成立.

所以面积的最大值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在.

1)若圆心也在直线上,过点作圆的切线,求切线方程;

2)若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,,顶点在底面上的射影恰为点,且

1)证明:平面平面

2)求棱所成的角的大小;

3)若点的中点,并求出二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,记点P到点A(-1,1)的距离与点P到直线x= - 1的距离之和的最小值为M,若B(3,2),记|PB|+|PF|的最小值为N,则M+N= ______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,PA平面ABCD,EB//PA,AB=PA=4,EB=2,F为PD的中点.

(1)求证AFPC

(2)BD//平面PEC

(3)求二面角D-PC-E的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学作为蓝色海洋教育特色学校,随机抽取100名学生,进行一次海洋知识测试,按测试成绩(假设考试成绩均在[65,90)内)分组如下:第一组[65,70),第二组 [70,75),第三组[75,80),第四组 [80,85),第五组 [85,90).得到频率分布直方图如图C34.

(1)求测试成绩在[80,85)内的频率;

(2)从第三、四、五组学生中用分层抽样的方法抽取6名学生组成海洋知识宣讲小组,定期在校内进行义务宣讲,并在这6名学生中随机选取2名参加市组织的蓝色海洋教育义务宣讲队,求第四组至少有1名学生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某省从121日至224日的新冠肺炎每日新增确诊病例变化曲线图.

若该省从121日至224日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列的前n项和为,则下列说法中正确的是(

A.数列是递增数列B.数列是递增数列

C.数列的最大项是D.数列的最大项是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018届河南省南阳市第一中学高三上学期第八次考试】某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于60分到140分之间(满分150),将统计结果按如下方式分成八组:第一组[60,70),第二组[70,80)……,第八组:[130,140],如图是按上述分组方法得到的频率分布直方图的一部分.

1)求第七组的频率,并完成频率分布直方图;

2)估计该校的2000名学生这次考试成绩的平均分(可用中值代替各组数据平均值)

3)若从样本成绩属于第一组和第六组的所有学生中随机抽取2名,求他们的分差小于10分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的右焦点,点在椭圆上.

(1)求椭圆的方程;

(2)过原点的直线与椭圆交于两点(不是椭圆的顶点),点在椭圆上,且,直线轴,轴分别交于两点.

(ⅰ)设直线斜率分别为,求的值;

(2)求面积的最大值.

查看答案和解析>>

同步练习册答案