精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\frac{x^2}{{\sqrt{x+1}}}$,g(x)=$\frac{{\sqrt{x+1}}}{x}$,则f(x)•g(x)=x,x∈(-1,0)∪(0,+∞).

分析 直接将f(x),g(x)代入约分即可.

解答 解:∵函数f(x)=$\frac{x^2}{{\sqrt{x+1}}}$,g(x)=$\frac{{\sqrt{x+1}}}{x}$,
∴f(x)•g(x)=x,x∈(-1,0)∪(0,+∞),
故答案为:x,x∈(-1,0)∪(0,+∞).

点评 本题考查了求函数的解析式问题,考查函数的定义域问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知抛物线T:y2=2px(p>0)的焦点为F,A(x0,y0)为T上异于原点的任意一点,点D为x的正半轴上的点,且有|FA|=|FD|,若x0=3时,D的横坐标为5.
(1)求T的方程;
(2)直线AF交T于另一点B,直线AD交T于另一点C,试求△ABC的面积S关于x0的函数关系式S=f(x0),并求其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将函数f(x)=sin2x的图象向左平移$\frac{π}{4}$个长度单位,得到函数g(x)的图象,则g(x)的单调递增区间是(  )
A.(kπ-$\frac{π}{2}$,kπ)(k∈Z)B.(kπ,kπ+$\frac{π}{2}$)(k∈Z)C.(kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$)(k∈Z)D.(kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.图为某个几何体的三视图,则该几何体的表面积为(  )
A.32B.16+16$\sqrt{2}$C.48D.16+32$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(3)=0,当x<0时,xf′(x)+f(x)>0,则有(  )
A.f(-3)<f(1)<f(2)B.f(2)<f(-3)<f(1)C.f(1)<f(-3)<f(2)D.f(-3)<f(2)<f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解不等式组:$\left\{\begin{array}{l}\frac{x+2}{x}≥2\\|2x-1|≤1\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知不交于同一点的三条直线l1:4x+y-4=0,l2:mx+y=0,l3:x-my-4=0
(1)当这三条直线不能围成三角形时,求实数m的值.
(2)当l3与l1,l2都垂直时,求两垂足间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.棱长为3的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,求图中三角形的面积、该球的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等差数列的首项为a1,公差为d.则该数列的通项公式为(  )
A.an=a1+d(n+1)B.an=a1+dnC.an=a1+d(n-1)D.an=a1+d(n-2)

查看答案和解析>>

同步练习册答案