精英家教网 > 高中数学 > 题目详情
已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
上的顶点为A(0,5),离心率为
3
2

(Ⅰ)求椭圆E的方程;
(Ⅱ)若直线y=-4交椭圆E于点B,C两点(点B在点C的左侧),点D在椭圆上,且满足
BD
=m
BA
+n
BC
(m,n为实数),求m+n的最大值以及对应点D的坐标.
考点:直线与圆锥曲线的关系,椭圆的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)根据顶点为A(0,5),离心率为
3
2
,求出几何量,尽快求椭圆E的方程;
(Ⅱ)设P(x,y),根据
BD
=m
BA
+n
BC
(m,n为实数),可得x=6m+12n-6,y=9m+8n-4,进而可得m+n,利用三角换元,可求m+n的最大值以及对应点D的坐标.
解答: 解:(I)由题意得:在椭圆E中,b=5,且e=
c
a
=
1-
b2
a2
=
3
2
,a2=b2+c2
∴a2=100,
∴椭圆E的方程为:
x2
100
+
y2
25
=1
…(4分)
(II)将y=-4代入椭圆方程
x2
100
+
y2
25
=1
中得x2=36,∴x=±6,
∵B点在C点左侧,∴B(-6,-4),C(6,-4).
∵A(0,5),∴
BA
=(6,9)
BC
=(12,0),
设D点(x,y),则
BD
=(x+6,y+4)

BD
=m
BA
+n
BC
,即x+6=6m+12n,y+4=9m,
整理可得m=
y+4
9
,n=
3x-2y+10
36
…(7分)
∴m+n=
3x+2y+26
36

令t=3x+2y,与椭圆方程,消去y整理方程得:满足△≥0,则t≤10
10
;…(10分)
∴m+n的最大值为
10
10
+26
36
=
5
10
+13
18
,即3x+2y=10
10
时满足…(11分)
10
10
=3x+2y
x2
100
+
y2
25
=1
x=3
10
y=
10
2

D(3
10
10
2
)
…(13分)
点评:本题考查椭圆的方程,考查直线与椭圆的位置关系,考查向量知识的运用,解题的关键是确定坐标之间的关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1﹙a>0,b>0﹚,F1,F2是其左右焦点,若椭圆的离心率为
1
2
,椭圆的焦点到相应准线的距离为3,
(1)求椭圆的标准方程;
(2)椭圆上是否存在一点M,使点M到其左准线的距离MN是MF1,MF2的等比中项?若存在,求出该点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

学校设计了一个实验学科的考查方案:考生从6道备选题中一次随机抽取3道题,按照题目要求独立完成全部实验操作,并规定:在抽取的3道题中,至少正确完成其中2道题便可通过考查.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都为
2
3
,且每题正确完成与否互不影响.
(1)求考生甲正确完成题目个数ξ的分布列和数学期望;
(2)用统计学知识分析比较甲、乙两考生哪位实验操作能力强及哪位通过考查的可能性大?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0),定点M(0,5),直线l:y=
p
2
与y轴交于点F,O为原点,若以OM为直径的圆恰好过l与抛物线C的交点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过点M作直线交抛物线C于A,B两点,连AF,BF延长交抛物线分别于A′,B′,求证:抛物线C分别过A′,B′两点的切线的交点Q在一条定直线上运动.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A,B,C是抛物线L:y2=2px(p>0)上的不同的三点,O为坐标原点,直线OA∥BC,且抛物线L的准线方程为x=-1.
(1)求抛物线L的方程;
(2)若△ABC的重心在直线x=-1上,求△ABC的面积取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(1,-2)作直线与曲线
x=2
2
cosθ
y=2sinθ
(θ为参数)相交于A,B两点,且|PA|•|PB|=
2
3
,求该直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若变量x,y满足约束条件
x+3y-3≥0
2x-y-3≤0
x-y+1≥0.
,则z=x+y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列命题
①命题“对任意的x<0,x3-x2+1≤0”的否定是“存在x≥0,x3-x2+1>0”;
②函数f(x)=2x-x2的零点有2个;③若函数f(x)=x2-|x+a|为偶函数,则实数a=0;
④若函数f(x)=
ax-5,(x>6)
(4-
a
2
)x+4,(x≤6)
在R上是单调递增函数,则实数a的取值范围为(1,8).       
其中真命题的序号是
 
(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知存在正数a,b,c满足
1
e
c
a
≤2,clnb=a+clnc,则ln
b
a
的取值范围是(  )
A、[1,
1
2
+ln2]
B、[1,+∞)
C、(-∞,e-1]
D、[1,e-1]

查看答案和解析>>

同步练习册答案