精英家教网 > 高中数学 > 题目详情
1.已知正项数列{an}中,其前n项和为Sn,且${a_n}=2\sqrt{S_n}-1$.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn=b1+b2+b3+…+bn,求Tn

分析 (1)利用递推关系及其等差数列的通项公式即可得出;
(2)利用“裂项求和”即可得出.

解答 解:(1)由题设条件知4Sn=(an+1)2,得4Sn+1=(an+1+1)2
两者作差,得4an+1=(an+1+1)2-(an+1)2
整理得(an+1-1)2=(an+1)2
又数列{an}各项均为正数,∴an+1-1=an+1,即an+1=an+2,
故数列{an}是等差数列,公差为2,又4S1=4a1=(a1+1)2,解得a1=1,
故有an=2n-1
(2)由(1)可得${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴Tn=b1+b2+b3+…+bn
=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.

点评 本题考查了递推关系的应用、等差数列的通项公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若函数f(x)为定义在R上的奇函数,且在(-∞,0)内是增函数,又f(2)=0,则不等式xf(x-1)<0的解集为(1,3)∪(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设F1、F2分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点,过原点的直线交椭圆于A、B两点,AF2⊥BF2,|AF2|=6,|BF2|=8,则椭圆C的方程为$\frac{{x}^{2}}{49}+\frac{{y}^{2}}{24}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow a=(-3,2,5),\overrightarrow b=(1,5,-1),则\overrightarrow a•\overrightarrow b$=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ 4x+3y-12≤0\\ y-2≥0\end{array}\right.$,则$z=\frac{2x-y+1}{x+1}$的最大值为(  )
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$\frac{9}{16}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.我国是世界上人口最多的国家,1982年十二大,计划生育被确定为基本国策.实行计划生育,严格控制人口增长,坚持少生优生,这是直接关系到人民生活水平的进一步提高,也是造福子孙后代的百年大计.
(1)据统计1995年底,我国人口总数约12亿,如果人口的自然年增长率控制在1%,到2020年底我国人口总数大约为多少亿(精确到亿)?
(2)当前,我国人口发展已经出现转折性变化.2015年10月26日至10月29日召开的党的十八届五中于全会决定,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子政策,积极开展应对人口老龄化行动.这是继2013年,十八届三中全会决定启动实施“单独二孩”政策之后的又一次人口政策调整.据统计2015年中国人口实际数量大约14亿,若实行全面两孩政策后,预计人口年增长率实际可达1%,那么需经过多少年我国人口可达16亿?
(参考数字:1.0125≈1.2824,lg2≈0.3010,lg7≈0.8451,lg1.01≈0.0043)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某企业打算购买工作服和手套,市场价为每套工作服53元,每副手套3元,该企业联系了两家商店A和B,由于用货量大,这两家商店都给出了优惠条件:
商店A:买一赠一,买一套工作服,赠一副手套;
商店B:打折,按总价的95%收款.
该企业需要工作服75套,手套x副(x≥75),如果工作服与手套只能在一家购买,请你帮助老板选择在哪一家商店购买更省钱?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点M(3,-2),N(-5,-1),且$\overrightarrow{MP}=\frac{1}{2}\overrightarrow{MN}$,则点P是(  )
A.(-8,1)B.(-1,-$\frac{3}{2}$)C.(1,$\frac{3}{2}$)D.(8,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{x+1,(-1≤x≤0)}\\{cosx,(0<x≤\frac{π}{2})}\end{array}\right.$,则${∫}_{-1}^{\frac{π}{2}}$f(x)dx=(  )
A.$\frac{1}{2}$B.1C.2D.$\frac{3}{2}$

查看答案和解析>>

同步练习册答案