精英家教网 > 高中数学 > 题目详情
1.设a>0,且a≠1,函数y=2+loga(x+2)的图象恒过定点P,则P点的坐标是(  )
A.(-1,2)B.(2,-1)C.(3,-2)D.(3,2)

分析 令真数为1,结合loga1=0恒成立,可得P点坐标,进而得到答案.

解答 解:当x+2=1,即x=-1时,
y=2+loga(x+2)=2恒成立,
故函数y=2+loga(x+2)的图象恒过定点P(-1,2),
故选:A

点评 本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在椭圆x2+4y2=16中,求通过点M(2,1)且被这点平分的弦所在的直线的方程和弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知y=f(x)是(0,+∞)上的可导函数,满足(x-1)[2f(x)+xf′(x)]>0(x≠1)恒成立,f(1)=2,若曲线f(x)在点(1,2)处的切线为y=g(x),且g(a)=2016,则a等于(  )
A.-500.5B.-501.5C.-502.5D.-503.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将夏令营的500名学生分别编号为001,002,…,500,这500名学生分住在三个营区,从001到200在第一营区,从201到350在第二营区,从351到500在第三营区.若采用分层抽样的方法抽取一个容量50的样本,则三个营区被抽取的人数分别为(  )
A.20,15,15B.20,16,14C.12,14,16D.21,15,14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C:(x-1)2+(y+2)2=9,直线l:y=kx+1,与圆C相交于A、B两点,O为坐标原点,并且OA⊥OB,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={0,x},B={x2,-x2,|x|-1},若A?B,则实数x的值为(  )
A.1或-1B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一块形状为直角三角形的铁皮,两直角边长分别为60cm,80cm,现将它剪成一个矩形,并以此三角形的直角为矩形的一个角,则矩形的最大面积是1200cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数$f(x)=\left\{{\begin{array}{l}{(2a-1)x+a}&{(x≤1)}\\{{{log}_a}x}&{(x>1)}\end{array}}\right.$是R上的减函数,则实数a的取值范围是[$\frac{1}{3},\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x2+2x-3<0},B={x|$\frac{x}{x-2}$<0},则A∩B=(  )
A.{x|x<0}B.{x|x>1}C.{x|0<x≤1}D.{x|0<x<1}

查看答案和解析>>

同步练习册答案