精英家教网 > 高中数学 > 题目详情
设函数y=f(x)满足对任意的实数t,都有f(1+t)=-f(1-t),f(t-2)=f(2-t)成立,则下面关于函数y=f(x)的说法:①图象关于点(1,0)对称;②图象关于y轴对称;③以2为周期;④f(2009)=0.其中正确的有______(将你认为正确说法前面的序号都填上).
①f(1+t)=-f(1-t)恒成立,则函数y=f(x)的图象关于(1,0)点对称;①正确.
②由f(t-2)=f(2-t)?f(x)=f(-x),则函数y=f(x)是偶函数,它的图象关于y轴对称,故②正确.
③若f(1+t)=-f(1-t),且f(1-t)=f(t-1)恒成立,?f(1+t)=-f(t-1)?f(t+2)=-f(t),从而f(t+4)=-f(t+2)=f(t),则函数y=f(x)以4为周期.③错误.
④∵函数y=f(x)以4为周期,∴f(2009)=f(4×502+1)=f(1),
在f(1+t)=-f(1-t)中令t=0得f(1)=-f(1),∴f(1)=0,
∴f(2009)=0.④正确.
故答案为:①②④..
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安庆模拟)设函数f(x)=cos
x
4
(sin
x
4
+cos
x
4
)-
1
2

(Ⅰ)求函数y=f(x)取最值时x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,且满(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=数学公式
(Ⅰ)求函数y=f(x)取最值时x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,且满(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省黄冈市武穴市梅川高中高三(上)11月月考数学试卷(理科)(解析版) 题型:解答题

设函数f(x)=
(Ⅰ)求函数y=f(x)取最值时x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,且满(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省安庆市重点中学高三(下)联考数学试卷(理科)(解析版) 题型:解答题

设函数f(x)=
(Ⅰ)求函数y=f(x)取最值时x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,且满(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源:安庆模拟 题型:解答题

设函数f(x)=cos
x
4
(sin
x
4
+cos
x
4
)-
1
2

(Ⅰ)求函数y=f(x)取最值时x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,且满(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

同步练习册答案