【题目】
已知二项式的展开式中前三项的系数成等差数列.
(1)求的值;
(2)设.
①求的值;
②求的值;
③求的最大值.
【答案】(1)由题设,得, ………………………………2分
即,解得n=8,n=1(舍去). ……………………3分
(2)①,令……………………4分
②在等式的两边取,得……………6分
(3)设第r+1项的系数最大,则……………8分
即解得r=2或r=3. …………………………9分
所以系数最大值为………………10分
【解析】
解:(1)由题设,得, ………………………3分
即,解得n=8,n=1(舍去).……………………4分
(2) ①,令………………………6分
②在等式的两边取,得………8分
③设第r+1项的系数最大,则…………………10分
即解得r=2或r=3.
所以系数最大值为.………………12分
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).是曲线上的动点,将线段绕点顺时针旋转得到线段,设点的轨迹为曲线.以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(I)求曲线,的极坐标方程;
(II)在(I)的条件下,若射线与曲线,分别交于两点(除极点外),且有定点,求面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,且满足Sn-n=2(an-2),(n∈N*)
(1)证明:数列{an-1}为等比数列.
(2)若bn=anlog2(an-1),数列{bn}的前项和为Tn,求Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点外卖现已成为上班族解决午餐问题的一种流行趋势.某配餐店为扩大品牌影响力,决定对新顾客实行让利促销,规定:凡点餐的新顾客均可获赠10元或者16元代金券一张,中奖率分别为和,每人限点一餐,且100%中奖.现有A公司甲、乙、丙、丁四位员工决定点餐试吃.
(Ⅰ) 求这四人中至多一人抽到16元代金券的概率;
(Ⅱ) 这四人中抽到10元、16元代金券的人数分别用、表示,记,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学图书馆举行高中志愿者检索图书的比赛,从高一、高二两个年级各抽取10名志愿者参赛。在规定时间内,他们检索到的图书册数的茎叶图如图所示,规定册数不小于20的为优秀.
(Ⅰ) 从两个年级的参赛志愿者中各抽取两人,求抽取的4人中至少一人优秀的概率;
(Ⅱ) 从高一10名志愿者中抽取一人,高二10名志愿者中抽取两人,3人中优秀人数记为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列中,,且,其前项和为,且为等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,记数列的前项和为.设是整数,问是否存在正整数,使等式成立?若存在,求出和相应的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com