ÈôF1¡¢F2Ϊ˫ÇúÏßC£º
x2
a2
-
y2
b2
=1
µÄ×ó¡¢ÓÒ½¹µã£¬OΪ×ø±êÔ­µã£¬µãP¼°N £¨2£¬
3
£©¾ùÔÚË«ÇúÏßÉÏ£¬MÔÚCµÄÓÒ×¼ÏßÉÏ£¬ÇÒÂú×ã
F1O
=
PM
£¬
OP
OM
|
OP
|•|
OM
|
=
OF1
OP
|
OF1
|•|
OP
|
£®
£¨1£©ÇóË«ÇúÏßCµÄÀëÐÄÂʼ°Æä·½³Ì£»
£¨2£©ÉèË«ÇúÏßCµÄÐéÖá¶ËµãB1¡¢B2£¨B1ÔÚyÖáµÄÕý°ëÖáÉÏ£©£¬µãA£¬BÔÚË«ÇúÏßÉÏ£¬ÇÒ
B2A
=¦Ë
B2B
£¬µ±
B1A
B1B
=0
ʱ£¬ÇóÖ±ÏßABµÄ·½³Ì£®
·ÖÎö£º£¨1£©ÓÉÌâÖª£º|OF1|=|PM|=c£¬¡ÏF1OP=¡ÏPOM£¬¹ÊF1OMPÊÇÁâÐΣ¬ÓÉË«ÇúÏßµÚÒ»¶¨Ò壺|PF2|-|PF1|=2a£¬|PF1|=|OF1|=c£¬¹Ê|PF2|=2a+c£¬ÓÉË«ÇúÏßµÚ¶þ¶¨ÒåµÃ£ºe=
|PF2|
|PM|
=
2a+c
c
£¬½âµÃe=2»òe=-1£¨Éᣩ£¬ÓÉ´ËÄÜÇó³öË«ÇúÏß·½³Ì£®
£¨2£©ÓÉ£¨1£©ÖªB1£¨0£¬3£©£¬B2£¨0£¬-3£©£¬
B2A
=¦Ë
B2B
£¬¹ÊÖ±ÏßAB¹ýB2£¨0£¬-3£©£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=
6k
k2-3
£¬x1x2=
18
k2-3
£®ÓÉ
B1A
B1B
=0
£¬Öª£¨1+k2£©x1x2-6k£¨x1+x2£©+36=0£®ÓÉ´ËÄÜÇó³öÖ±ÏßABµÄ·½³Ì£®
½â´ð£º½â£º£¨1£©ÓÉÌâÖª£º|OF1|=|PM|=c£¬¡ÏF1OP=¡ÏPOM£¬¡àF1OMPÊÇÁâÐΣ¬¡­£¨1·Ö£©
¡ßÓÉË«ÇúÏßµÚÒ»¶¨Ò壺|PF2|-|PF1|=2a£¬|PF1|=|OF1|=c£¬
¡à|PF2|=2a+c£¬
¡àÓÉË«ÇúÏßµÚ¶þ¶¨ÒåµÃ£ºe=
|PF2|
|PM|
=
2a+c
c
£»
¡àe=2
1
e
+1£¬¼´e2-e-2=0£»
½âµÃe=2»òe=-1£¨Éᣩ£»¡­£¨3·Ö£©
¡ße=
c
a
=2
£¬¡àc=2a£¬
¡àb2=3a2
½«N£¨2£¬
3
£©´úÈëË«ÇúÏß·½³ÌµÃ 
4
a2
-
3
3a2
=1
£¬
¡àa2=3£¬b2=9¡­£¨5·Ö£©
¡àËùÇóË«ÇúÏß·½³ÌΪ
x2
3
-
y2
9
=1
¡­£¨6·Ö£©
£¨2£©ÓÉ£¨1£©ÖªB1£¨0£¬3£©£¬B2£¨0£¬-3£©£¬
¡ß
B2A
=¦Ë
B2B
£¬¡àB2£¬A£¬BÈýµã¹²Ïߣ¬¼´Ö±ÏßAB¹ýB2£¨0£¬-3£©£¬
¡àÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=
6k
k2-3
£¬x1x2=
18
k2-3
£®
¡ß
B1A
B1B
=0
£¬
¡àx1x2+y1y2-3£¨y1+y2£©+9=0£¬
¡à£¨1+k2£©x1x2-6k£¨x1+x2£©+36=0£®
½«x1+x2ºÍx1x2´úÈ룬µÃk=¡À
5
£®
¼ìÑéÂú×ã¡÷£¾0£¬
¡àÖ±ÏßABµÄ·½³ÌΪy=¡À
5
x-3
£®
µãÆÀ£º±¾Ì⿼²éË«ÇúÏßCµÄÀëÐÄÂʼ°Æä·½³ÌµÄÇ󷨣¬ÇóÖ±ÏßABµÄ·½³Ì£®½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôF1¡¢F2Ϊ˫ÇúÏß
x2
a2
-
y2
b2
=1
µÄ×ó¡¢ÓÒ½¹µã£¬OΪ×ø±êÔ­µã£¬µãPÔÚË«ÇúÏßµÄ×óÖ§ÉÏ£¬µãMÔÚË«ÇúÏßµÄÓÒ×¼ÏßÉÏ£¬ÇÒÂú×ã
F1O
=
PM
£¬ 
OP
=¦Ë(
OF1
|
OF
1
|
+
OM
|
OM
|
)
£¨¦Ë£¾0£©£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A¡¢
2
B¡¢
3
C¡¢2
D¡¢3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

(±¾ÌâÂú·Ö14·Ö) ÈôF1¡¢F2Ϊ˫ÇúÏßµÄ×ó¡¢ÓÒ½¹µã£¬OΪ×ø±êÔ­µã£¬PÔÚË«ÇúÏß×óÖ§ÉÏ£¬MÔÚÓÒ×¼ÏßÉÏ£¬ÇÒÂú×㣨¢ñ£©Çó´ËË«ÇúÏßµÄÀëÐÄÂÊ£»£¨¢ò£©Èô´ËË«ÇúÏß¹ýµã£¬ÇóË«ÇúÏß·½³Ì£»£¨¢ó£©É裨¢ò£©ÖÐË«ÇúÏßµÄÐéÖá¶ËµãΪB1£¬B2£¨B1ÔÚyÖáÕý°ëÖáÉÏ£©£¬ÇóB2×÷Ö±ÏßABÓëË«ÇúÏß½»ÓÚA¡¢BÁ½µã£¬Çóʱ£¬Ö±ÏßABµÄ·½³Ì.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ,ÈôF1¡¢F2Ϊ˫ÇúÏß=1µÄ×ó¡¢ÓÒ½¹µã,OΪ×ø±êÔ­µã,PÔÚË«ÇúÏß×óÖ§ÉÏ,MÔÚÓÒ×¼ÏßÉÏ,ÇÒÂú×ã=,

=.

(1)ÇóË«ÇúÏßµÄÀëÐÄÂÊ;

(2)ÈôË«ÇúÏß¹ýµãN(2,),ÇóË«ÇúÏߵķ½³Ì.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011ÄêÔÆÄÏÊ¡¸ßÈýÊýѧһÂÖ¸´Ï°Õ½ÚÁ·Ï°£ºË«ÇúÏߣ¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÈôF1¡¢F2Ϊ˫ÇúÏßµÄ×ó¡¢ÓÒ½¹µã£¬OΪ×ø±êÔ­µã£¬µãPÔÚË«ÇúÏßµÄ×óÖ§ÉÏ£¬µãMÔÚË«ÇúÏßµÄÓÒ×¼ÏßÉÏ£¬ÇÒÂú×㣨¦Ë£¾0£©£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨ £©
A£®
B£®
C£®2
D£®3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸