精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1)证明:PB∥平面AEC;
(2)设AP=1,AD= ,三棱锥P﹣ABD的体积V= ,求A到平面PBC的距离.

【答案】
(1)证明:设BD与AC 的交点为O,连结EO,

∵ABCD是矩形,

∴O为BD的中点

∵E为PD的中点,

∴EO∥PB.

EO平面AEC,PB平面AEC

∴PB∥平面AEC;


(2)解:∵AP=1,AD= ,三棱锥P﹣ABD的体积V=

∴V= =

∴AB= ,PB= =

作AH⊥PB交PB于H,

由题意可知BC⊥平面PAB,

∴BC⊥AH,

故AH⊥平面PBC.

又在三角形PAB中,由射影定理可得:

A到平面PBC的距离


【解析】(1)设BD与AC 的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;(2)通过AP=1,AD= ,三棱锥P﹣ABD的体积V= ,求出AB,作AH⊥PB角PB于H,说明AH就是A到平面PBC的距离.通过解三角形求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+3)=﹣f(x),且当x∈[0,3)时,f(x)=log4(x+1),给出下列命题:
①f(2015)>f(2014);
②函数f(x)在定义域上是周期为3的函数;
③直线x﹣3y=0与函数f(x)的图象有2个交点;
④函数f(x)的值域为[0,1).
其中不正确的命题个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆关于直线对称的圆为.

(1)求圆的方程;

(2)过点作直线与圆交于两点, 是坐标原点,是否存在这样的直线,使得在平行四边形?若存在,求出所有满足条件的直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx+1(a,b∈R且a≠0),F(x)=
(1)若f(﹣1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;
(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围;
(3)设mn<0,m+n>0,a>0,且f(x)是偶函数,判断F(m)+F(n)是否大于零.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C的对边分别为a,b,c,b=2 ,B=
(1)若a=2,求角C;
(2)若D为AC的中点,BD= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】累计净化量(CCM)是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为时对颗粒物的累计净化量(单位:克).根据国家标准,对空气净化器的累计净化量(CCM)有如下等级划分:

净化量(克)

12以上

等级

已知某批空气净化器共台,其累计净化量都分布在区间内,为了解其质量,随机抽取了台净化器作为样本进行估计,按照均匀分组,其中累净化量在的所有数据有:,并绘制了如下频率分布直方图

1)求的值及频率分布直方图中的值;

2)以样本估计总体,试估计这批空气净化器(共2000台)中等级为的空气净化器有多少台?

3)从累计净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随即编号为1,2…960,分组后在第一组采用简单随机抽样的方法抽到的号码为5,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的32人中,做问卷C的人数为(
A.15
B.10
C.9
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3﹣2ax2+3x(x∈R).
(1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;
(2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:
(1)命题“若 ,则tanα=1”的逆否命题为假命题;
(2)命题p:x∈R,sinx≤1.则¬p:x0∈R,使sinx0>1;
(3)“ ”是“函数y=sin(2x+)为偶函数”的充要条件;
(4)命题p:“x0∈R,使 ”;命题q:“若sinα>sinβ,则α>β”,那么(¬p)∧q为真命题.
其中正确的个数是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案