精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1 , 直线C2的极坐标方程分别为ρ=4sinθ,ρcos( )=2
(1)求C1与C2交点的极坐标;
(2)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为 (t∈R为参数),求a,b的值.

【答案】
(1)解:圆C1,直线C2的直角坐标方程分别为 x2+(y﹣2)2=4,x+y﹣4=0,

∴C1与C2交点的极坐标为(4, ).(2 ).


(2)解:由(1)得,P与Q点的坐标分别为(0,2),(1,3),

故直线PQ的直角坐标方程为x﹣y+2=0,

由参数方程可得y= x﹣ +1,

解得a=﹣1,b=2.


【解析】(1)先将圆C1 , 直线C2化成直角坐标方程,再联立方程组解出它们交点的直角坐标,最后化成极坐标即可;(2)由(1)得,P与Q点的坐标分别为(0,2),(1,3),从而直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y= x﹣ +1,从而构造关于a,b的方程组,解得a,b的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE= BB1 , C1F= CC1

(1)求平面AEF与平面ABC所成角α的余弦值;
(2)若G为BC的中点,A1G与平面AEF交于H,且设 = ,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,角A,B,C所对的边分别为a,b,c,( a﹣sinC)cosB=sinBcosC,b=4

(1)求角B的大小;
(2)D为BC边上一点,若AD=2,SDAC=2 ,求DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的最小正周期;
(2)当 时,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点,直线,设圆的半径为,且圆心在直线上.

)若圆心的坐标为,过点作圆的切线,求切线的方程.

)若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中不正确的序号为_______

①若函数上单调递减,则实数的取值范围是

②函数是偶函数,但不是奇函数;

③已知函数的定义域为,则函数的定义域是

④若函数上有最小值-4,(为非零常数),则函数上有最大值6.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣5:不等式选讲
已知函数f(x)=|x﹣2|﹣|x﹣5|.
(1)证明:﹣3≤f(x)≤3;
(2)求不等式f(x)≥x2﹣8x+15的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个几何体的平面展开图,其中四边形ABCD为正方形,△PDC, △PBC, △PAB, △PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为 ( )

A. 平面BCD⊥平面PAD B. 直线BE与直线AF是异面直线

C. 直线BE与直线CF共面 D. 面PAD与面PBC的交线与BC平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,且
(1)求cos2θ与 的值;
(2)若 ,求的值.

查看答案和解析>>

同步练习册答案