精英家教网 > 高中数学 > 题目详情
如图,在平面直角坐标系中,是一个与x轴的正半轴、y轴的正半轴分别相切于点C、D的定圆所围成区域(含边界),A、B、C、D是该圆的四等分点,若点P(x,y)、,则称P优于,如果中的点Q满足:不存在中的其它点优于Q,那么所有这样的点Q组成的集合是劣弧(   )

A. A    B.B     C. C    D.D
D

试题分析:依题意,在点Q组成的集合中任取一点,过该点分别作平行于两坐标轴的直线,构成的左上方区域(权且称为“第二象限”)与点Q组成的集合无公共元素,这样点Q组成的集合才为所求. 检验得:D.
点评:本题考查如何把代数语言翻译成几何语言,即数与形的结合.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若圆C与圆(x+2)2+(y-1)2=1关于原点对称,则圆C的方程是(  ).
A.(x-2)2+(y+1)2=1B.(x-2)2+(y-1)2=1
C.(x-1)2+(y+2)2=1D.(x+1) 2+(y-2)2=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,圆C的方程为x²+y²-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是                

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如下图,动点C在⊙O的弦AB上运动,AB=,连接OC,CD⊥OC交⊙O于D,则CD的最大值为_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知圆和圆.
(1)若直线经过点(2,-1)和圆的圆心,求直线的方程;
(2)若点(2,-1)为圆的弦的中点,求直线的方程;
(3)若直线过点,且被圆截得的弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线与圆交于不同的两点ABO是坐标原点,且,则实数m的取值范围是             

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

上的点到直线距离的最大值是(    )       
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知圆C1与圆C2相交于A、B两点。
⑴ 求公共弦AB的长;
⑵ 求圆心在直线上,且过A、B两点的圆的方程;
⑶ 求经过A、B两点且面积最小的圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以两点为直径端点的圆的方程是
A.B.
C.D.

查看答案和解析>>

同步练习册答案